
Geometric Combinatorics

Daniel Irving Bernstein





Contents

Chapter 1. Convexity and polytopes 5
1. Convexity basics 5
2. The relative boundary of a convex set 6
3. Duality and the main theorem of polytopes 9
4. Exercises 12

Chapter 2. The face lattice 15
1. Preliminaries on partially ordered sets 15
2. The face lattice of a polytope 17
3. Exercises 20

Chapter 3. Graphs of polytopes 21
1. General polytopes 21
2. Graphs of three-dimensional polytopes 22

Chapter 4. Matroid fundamentals 23
1. Basic definitions 23
2. Cryptomorphism 24
3. The lattice of flats of a matroid 28

Chapter 5. Visualizing matroids 31
1. Matroids of rank three 31
2. Projective geometry 32
3. Exercises 32

Chapter 6. Matroid duality and minors 35
1. Duality basics 35
2. Duals of representable matroids 36
3. Matroid minors and graphic duals 36
4. Exercises 38

Chapter 7. Oriented matroids 39
1. Ordered fields 39
2. Oriented matroid axiomatics 40
3. Duality 41
4. Low rank 42
5. Gale diagrams of polytopes 43

Chapter 8. Algebraic matroids 47
1. Field theory preliminaries 47
2. Geometry of algebraic matroids 49

3



4 CONTENTS

3. Algebraic representability 51
4. Applications 51
5. Exercises 55

Bibliography 57



CHAPTER 1

Convexity and polytopes

1. Convexity basics

A linear combination of elements in a set S ⊆ Rd is an expression of the form

n∑
i=1

tixi

where each xi ∈ S. Such a linear combination is called an affine combination if
∑

i ti = 1,
a conic combination if ti ≥ 0 for each i, and a convex combination if it is conic and
affine. The set of all linear, affine, conic, and convex combinations of a set S will be denoted
RS,Aff(S),R≥0(S), and Conv(S). In words, we will refer to them as the linear span, the affine
hull, the conic hull, and the convex hull of S.

Let us explore the geometric significance of these concepts when S = {x, y} consists of two
distinct points. When neither x nor y is the origin, the linear hull of S is the unique plane
containing x, y and the origin. The affine hull of S is the unique line in Rd containing x and y
and the convex hull of S is the line segment between x and y. The conic hull of S is the union
of all rays from the origin through a point in the convex hull of x and y.

One says that S ⊆ Rd is a linear subspace when S = R(S), an affine subspace when
S = Aff(S), a cone when S = R≥0(S), and convex when S = Conv(S).

AV-polytope is the convex hull of a finite set of points, i.e. a set of the form Conv({x1, . . . , xn}).

Figure 1.1.1. The square is a polytope. The disc is convex, but not a polytope.

A halfspace is a set of the form {x ∈ Rd : ax ≤ c} where a ∈ (Rd)∗ and c ∈ R. An
H-polyhedron is an intersection of finitely many halfspaces. An H-polytope is a bounded
H-polyhedron. We will see in Section 3 that every V -polytope is an H-polytope and vice versa.

We now give several examples of polytopes.

(1) Simplices: Fix an integer d ≥ 1 and for each 1 ≤ i ≤ n define ei ∈ Rd to be the ith

standard basis vector in Rd. We define the standard simplices as follows

∆d−1 : = Conv{e1, . . . , ed}

= {x ∈ Rd :
d∑

i=1

xi = 1; 0 ≤ xi∀i = 1, . . . , d}.
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6 1. CONVEXITY AND POLYTOPES

(2) Cubes: Given d ≥ 1, define the standard d-dimensional cube by

Cd : = Conv({+1,−1}d)

= {x ∈ Rd : −1 ≤ xi ≤ 1∀i = 1, . . . , d}.

(3) Cross polytopes: Given d ≥ 1, define the standard d-dimensional cross polytope
by

C∗
d : = Conv{e1,−e1, e2,−e2, . . . , ed,−ed}

= {x ∈ Rd :
d∑

i=1

|xi| ≤ 1}.

Perhaps the most fundamental quantity one can associate to a geometric object is its di-
mension. We would like a precise way to quantify the dimension of a polytope that is easy to
work with. Linear spaces are just about the only thing in mathematics that have an obvious
definition of their dimension, which is the size of a basis. The following lemma says that each
affine space is uniquely associated to a linear space. We will then define the dimension of an
affine space to be the dimension of the associated linear space. Then, with this at our disposal,
we will define the dimension of a polytope to be the dimension of its affine hull. Given two
subsets S1, S2 ⊆ Rd, the (Minkowski) sum of S1 and S2, denoted S1 + S2, is defined to be

S1 + S2 := {x+ y : x ∈ S1, y ∈ S2}.

Lemma 1.1: Let A ⊆ Rd be an affine subspace. Then there exists a unique linear subspace
L ⊆ Rd such that A = L+ {b} where b is an arbitrary element of A.

Proof. Let b ∈ A and define L := A + {−b}. We must show that L is indeed a linear
subspace and that it does not depend on our choice of b. Indeed, let x1, x2 ∈ A so that x1 − b
and x2 − b are arbitrary elements of L. Their sum is (x1 + x2 − b)− b, which is also an element
of L as x1 + x2 − b is an affine combination of elements in A and is therefore in A itself. Now,
let x ∈ A and t ∈ R. Then t(x− b) = tx+(1− t)b− b which is in L since tx+(1− t)b ∈ A. Our
choice of L does not depend on b since x− c ∈ L for any c ∈ A since x− c = (x− c+ b)− b and
x− c+ b ∈ A. □

The dimension of an affine subspace A ⊆ Rd is the size of a basis of the linear space
{x − b ∈ Rd : x ∈ A} where b ∈ A. We denote this by dim(A). The dimension of a convex set
C ⊆ Rd is dim(Aff(C)). Two convex sets P ∈ Rd and Q ∈ Re are affinely isomorphic if there
exists an affine function f : Rd → Re that is a bijection between P and Q. The polytopes in
Figure 1.1.2 suggest that the notion of affine isomorphism is too strong for combinatorics since
all three polytopes are, in a sense that we will make precise soon, “combinatorially equivalent”
in the sense that they both have four edges and four vertices.

2. The relative boundary of a convex set

The interesting combinatorics of a convex set happens on its relative boundary, a topological
notion we will recall soon. In particular, the relative boundary of a convex set is made up of
lower-dimensional convex sets, called faces, that form a partially ordered set under inclusion.
Since we are focusing on relative boundaries, we will often restrict our consideration to closed
convex sets.
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Figure 1.1.2. The first two polytopes are affinely isomorphic to each other, but
not to the third. This is because affine functions preserve parallel lines and the
first two have two sets of parallel lines, but the last one has none.

We now recall the relevant topological notions. Let S ⊆ Rd be a set. We say that S is closed
if it is closed under taking convergent sequences, i.e. if x1, x2, · · · ∈ S and xn → x, then x ∈ S.
We say that S is open if Rd \ S is closed, or equivalently, if S is a union of open balls. The
interior of S is the union of all open sets contained in S and the closure of S is the intersection
of all closed sets containing S. The boundary of S is the relative complement of the interior of
S in the closure of S. The relative interior (resp. closure, boundary) of a convex set C ⊆ Rd

is the interior (resp. closure, boundary) of C in the induced topology on Aff(C).

Definition 1.2: Let C ⊆ Rd be closed and convex. A subset F ⊆ C is a face of C if

(1) F is closed,
(2) F is convex, and
(3) given x, y ∈ C, if ri(Conv(x, y)) ∩ F ̸= ∅, then x, y ∈ F .

A face is called an extreme point if it has dimension 0, an edge if it has dimension 1 (or
sometimes, in the case of cones, an extreme ray), and a facet if it has dimension dim(C) − 1.
A face is proper if it is neither C nor ∅.

Example 1.3: Every boundary point on a ball in Rd is an extreme point and these are the
only proper faces. The set of proper faces of a polygon consists of its edges and vertices. An
affine space has no proper faces. The only proper face of the halfspace {x ∈ Rd : ax ≥ c} is its
boundary hyperplane, namely {x ∈ Rd : ax = c}.

Lemma 1.4: Let C ⊆ Rd be convex of dimension at least 1. Then ri(C) is nonempty.

Proof. Let k denote the dimension of C and let x1, . . . , xk+1 affinely span Aff(C). Consider
the function f : ∆k → C given by

k+1∑
i=1

tiei 7→
k+1∑
i=1

tixi.

Then f is continuous and injective. Since ∆k is compact, f(∆k) is homeomorphic to ∆k [6,

Theorem 26.6]. Since 1
k

∑k+1
i=1 ei ∈ ri(∆k), f(∆k), and therefore C, has nonempty relative

interior. □

Proposition 1.5: If C ⊆ Rd is closed and convex and F ⊂ C is a proper face, then F ⊆ rb(C).

Proof. Let y ∈ F and let x ∈ C \ F . For n = 1, 2, . . . , define

Sn := {ty + (1− t)x : 0 ≤ t ≤ 1 + 1/n}.
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Since F is a face of C and Sn is a line segment whose interior intersects F , there exists a point
yn ∈ Sn \ C. Then, yn → y as n → ∞. But this implies y ∈ rb(C) because yn ∈ Aff(C) as
Sn ⊆ Aff(C). □

Proposition 1.6: Let C ⊆ Rd be closed and convex. If F is a proper face of C, then dim(F ) <
dim(C).

Proof. Since F ⊆ C, dim(F ) ≤ dim(C). Assume for the sake of contradiction that
dim(F ) = dim(C). Since Aff(F ) ⊆ Aff(C), this implies that Aff(F ) = Aff(C). Passing
to this affine hull if necessary, we may assume without loss of generality that dim(C) = d.
Since dim(F ) = d, Lemma 1.4 implies that ri(F ) is a nonempty open subset of Rd. Therefore
ri(F ) ⊆ ri(C) implies ri(F ) ⊆ ri(C). But this contradicts Lemma 1.5. □

Proposition 1.7: Let C be closed and convex and let F ⊆ C be a face. Then:

(1) every face of F is a face of C, and
(2) every face of C contained in F is a face of C.

Proof. Let F ′ be a face of F . Let x, y ∈ C be such that ri(Conv(x, y)) ∩ F ′ ̸= ∅. Then
x, y ∈ F since F is a face of C. This implies x, y ∈ F ′ as F ′ is a face of F . So F ′ is a face of C.

Now let F ′ be a face of C contained in F . Let x, y ∈ F with F ′ ∩ ri(Conv(x, y)) ̸= ∅. Since
F ′ is a face of C, this implies x, y ∈ F ′. So F ′ is a face of C. □

Lemma 1.8: Let C ⊆ Rd be closed and convex, let a ∈ (Rd)∗, let c ∈ R, and assume ax ≤ c for
all x ∈ C. The set

Fa,c := {x ∈ C : ax = c}
is a face of C.

Proof. Let x, y ∈ C and assume that there exists z ∈ Fa,c ∩ ri(Conv(x, y)). Let t ∈ [0, 1]
such that z = tx+ (1− t)y. Then

c = az = tax+ (1− t)ay.

Since ax ≥ c and ay ≥ c, this implies ax = ay = c, i.e. that x, y ∈ Fa,c. □

A face F of a closed convex set C ⊆ Rd is called exposed if F = Fa,c as in Lemma 1.8.
The geometric interpretation of an exposed face is as follows. If ax ≤ c for all x ∈ C, then the
hyperplane {x ∈ Rd : ax = c} lies tangent to C. The intersection of this hyperplane with C is
the face Fa,c. A convex set may have faces that are not exposed - see Figure 1.2.3, for example.
That said, we will eventually see that all faces of a polytope are exposed so we will not spend
much time talking about non-exposed faces.

Figure 1.2.3. All of the faces of the above convex set C ⊂ R2 are exposed, aside
from the four extreme points indicated by black dots. To see this, note that the
tangent line to C at any one of these points will intersect along the entire edge
that it lies on.
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We now come to the first big theorem in convexity theory: the hyperplane separation theo-
rem. There are various similar theorems that go by the same name and we will stick with the
one that has the exact level of generality we need. The second homework guides you through a
proof of this theorem. A proof will be added to these notes after that assignment is turned in.

Theorem 1.9 (Hyperplane separation theorem): Given a convex C ⊂ Rn and a point y ∈ Rd\C,
there exists a ∈ (Rn)∗ and b ∈ R such that ax ≤ b for all x ∈ C and ay ≥ b.

The geometric content of Theorem 1.9 is as follows: given a convex set C ⊆ Rd and a point
y /∈ C, there exists a hyperplane H containing C in one of its two half-spaces and y in the other.
When y /∈ rb(C), H can be chosen so that neither C nor {y} intersects H, and C and y lie on
opposite sides of this hyperplane. When y ∈ rb(C), H will contain y and be tangent to C. The
hyperplane separation theorem allows us to close an important circle of ideas that will allow us
to move away from topological considerations. In particular, we have the following theorem.

Theorem 1.10: Let C ⊆ Rd be closed and convex. Then rb(C) is the union of its proper faces.

Proof. Proposition 1.5 implies that the union of the proper faces of C is contained in rb(C).
It therefore suffices to let x ∈ rb(C) and find a proper face of C containing x. By restricting
to Aff(C) if necessary, we may assume that dim(C) = d. Since ri(C) is convex, Theorem 1.9
implies that there exists a ∈ (Rd)∗ and c ∈ R such that ax = c and ay ≤ c for all y ∈ C.
Lemma 1.8 implies that Fa,c := {y ∈ C : ay = c} is a face of C and it is clear that this contains
x. The dimension of Fa,c is at most d− 1 and since dim(C) = d and Fa,c ̸= ∅, Fa,c is proper. □

The following theorem is often known as the Minkowski-Carathéodory theorem.

Theorem 1.11: Let C ⊂ Rd be a compact, convex set of dimension k. Then for each x ∈ C,
there exist extreme points x1, . . . , xk+1, not necessarily distinct, such that x ∈ Conv(x1, . . . , xk+1).
Moreover, one such xi may be chosen arbitrarily.

Proof. We induct on k. When k = 0, C is a single point and the theorem follows. Now
assume k ≥ 1 and let x ∈ C. If x ∈ rb(C), then Theorem 1.10 implies that there exists a face
F such that x ∈ F . Proposition 1.6 implies that dim(F ) < k so we are done by induction.

Now suppose x ∈ ri(C) and let xk+1 be an extreme point of C. Compactness of C implies
that Aff{x, xk+1} ∩ C = Conv{xk+1, y} where y ∈ rb(C). Theorem 1.10 implies that there
exists a face F of C with y ∈ F and Proposition 1.6 implies that dim(F ) < k. Since x ∈
ri(C), the definition of a face implies that xk+1 /∈ F . The inductive hypothesis implies that
y ∈ Conv{x1, . . . , xk} for extreme points x1, . . . , xk of F . Proposition 1.7 implies that x1, . . . , xk
are also extreme points of C. Since x ∈ Conv{xk+1, y} and y ∈ Conv{x1, . . . , xk}, we have that
x ∈ Conv{x1, . . . , xk+1}. □

3. Duality and the main theorem of polytopes

The goal of this section is to prove the main theorem of polytopes, i.e. that H-polytopes
are V-polytopes and vice-versa. We will do this by first showing that every H-polytope is a
V-polytope. Once we have this, we will will introduce convex duality which will enable us to
prove the other direction.

Each hyperplane H ⊆ Rd defines two halfspaces which we will denote H+ and H−. There
is a choice to be made as to which halfspace is which, but when H is given explicitly as

H := {x ∈ Rd : ax = c},
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we define
H+ := {x ∈ Rd : ax ≤ c} and {x ∈ Rd : ax ≥ c}.

Using this notation, each H-polytope can be written as

(1)
n⋂

i=1

H+
i

for hyperplanes H1, . . . ,Hn ⊂ Rd. The following lemma characterizes the extreme points of an
H-polytope.

Lemma 1.12: Let P be an H-polytope as in (1), let x ∈ P , and define

I := {i ∈ {1, . . . , n} : x ∈ Hi}.
Then x is an extreme point of P if and only if

(2) {x} =
⋂
i∈I

Hi.

Proof. Let a1, . . . , an ∈ (Rd)∗ and c1, . . . , cn ∈ R such that H+
i = {aix ≤ ci}. Assume (2).

Let y, z ∈ Rd with y, z ̸= x and y ∈ P such that x ∈ ri(Conv(y, z)). By our hypothesis, there
exists i ∈ I such that aiy < ci. Since aix = ci and x ∈ ri(Conv(y, z)), it follows that aiz > ci so
z /∈ P .

Now assume (2) fails and define A :=
⋂

i∈I Hi. Then P ∩ A is an H-polytope in A which
we can write as P ∩ A = {y ∈ A : aiy ≤ ci for all i /∈ I}. We claim that P ∩ A is at least one-
dimensional. Indeed, P ∩A has the same dimension as A (which is at least one) since otherwise
P ∩ A would lie in a hyperplane of A and so there would be some i /∈ I such that aiy = ci for
all y ∈ P ∩ A. But x ∈ P ∩ A, so this would imply i ∈ I, a contradiction. Since aix < ci for
all i /∈ I, x ∈ ri(P ∩ A). Therefore, there exist y, z ∈ P ∩ A such that x ∈ ri(Conv(y, z)). This
implies that x is not an extreme point of P . □

Corollary 1.13: Every H-polytope is a V-polytope.

Proof. Let P be an H-polytope. Lemma 1.12 implies that P has finitely many extreme
points x1, . . . , xk. Theorem 1.11 then implies that P = Conv{x1, . . . , xk}. □

We now develop the theory of convex duality. This will enable us to use Corollary 1.13 in
order to prove its converse.

Definition 1.14: Let C ⊆ Rd. The (polar) dual C∗ of C is

C∗ := {a ∈ (Rd)∗ : ax ≤ 1 for all x ∈ C}.
We pause to note two things about our definition of duality. In particular, C need not

be convex, and C∗ lives in the dual of the vector space that contains C. Using the natural
isomorphism between a vector space and its double dual, we may view C and C∗∗ as subsets of
the same space.

Theorem 1.15: Let C ⊆ Rd. Then

(1) C∗ is closed and convex
(2) If D ⊆ Rd and C ⊆ D, then D∗ ⊆ C∗

(3) C ⊆ C∗∗

(4) 0 ∈ C∗
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(5) If 0 ∈ ri(C) then C∗ is compact.
(6) If C ⊆ Rd is convex, compact, and d-dimensional, then C∗∗ = C.

Proof. We will prove (6), leaving (1) through (5) as an exercise. We know from (3) that
C ⊆ C∗∗, so it suffices to show that if x /∈ C then x /∈ C∗∗. Theorem 1.9 implies that there
exists a ∈ (Rd)∗ and c ∈ R such that ay ≤ c for all y ∈ C and ax ≥ c. Since C is closed, we
can choose a, c so that ax > c. We may also assume that c ̸= 0, since if c = 0, then a, ε satisfy
the desired conditions for small ε > 0. Compactness of C implies that the functional a achieves
a maximum α on C and since 0 ∈ C, we know α ≥ 0. This implies c > 0 and therefore that
1
cax > 1. But this shows that x /∈ C∗∗ since 1

cay ≤ 1 for all y ∈ C (i.e. that a ∈ C∗). □

Lemma 1.16: Let P ⊂ Rd be a d-dimensional V-polytope with 0 ∈ ri(P ). Then P ∗ is a d-
dimensional H-polytope and 0 ∈ ri(P ∗).

Proof. We already know from Theorem 1.15 that P ∗ is compact so it suffices to show
that P ∗ is an intersection of finitely many half-spaces and that 0 ∈ ri(P ∗). Assume P =
Conv{v1, . . . , vk}. If a ∈ P ∗ then avi ≤ 1 for i = 1, . . . , k. Conversely, if avi ≤ 1 for all i and

x ∈ P , then since x =
∑k

i=1 tivi with
∑k

i=1 ti = 1, we have

ax =
k∑

i=1

tiavi ≤
k∑

i=1

ti = 1

and therefore a ∈ P ∗.
Now we argue that P ∗ is full-dimensional with 0 in its interior. The inequalities avi ≤ 1 are

satisfied strictly for a = 0 and therefore for all a in a small open neighborhood of 0. Thus 0 is in
the interior of P ∗. Since P ∗ has a nonempty (non-relative) interior, P ∗ is full-dimensional. □

Theorem 1.17 (Main theorem of polytopes): Every H-polytope is a V-polytope and vice versa.

Proof. In light of Corollary 1.13, it suffices to show that every V-polytope is an H-polytope.
Indeed, let P ⊂ Rd be a V -polytope. By passing to Aff(P ) and translating if necessary, we may
assume that P is full-dimensional and that 0 ∈ ri(P ). Now, Lemma 1.16 and Corollary 1.13
together tell us that P ∗ is a V-polytope. Applying Lemma 1.16 once more tells us that P ∗∗ is
an H-polytope. Theorem 1.15 then tells us that P = P ∗∗ so that P is an H-polytope as well. □

Theorem 1.17 has earned its title as the main theorem of polytopes because many funda-
mental properties of polytopes are easy to prove using one of the two equivalent notions and
hard using the other. Consider for example the following proposition, which has a very short
proof in light of Theorem 1.17, but would otherwise be much harder if we were stuck with only
one of V or H descriptions.

Proposition 1.18: Let P,Q ⊆ Rd be polytopes. Then P +Q and P ∩Q are polytopes.

Proof. Since P and Q are polytopes, we can write P = Conv{v1, . . . , vn} and Q =
{u1, . . . , um}. We immediately see that P + Q ⊇ Conv{vi + uj : i = 1, . . . , n; j = 1, . . .m}.
To see that this containment is not strict, let x+ y ∈ P +Q. Then we have

x+ y =
n∑

i=1

tivi +
m∑
j=1

sjvj .
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Since
∑m

j=1 sj =
∑n

i=1 ti = 1, we can rewrite the above as

n∑
i=1

ti

 m∑
j=1

sj

 vi +
m∑
j=1

sj

(
n∑

i=1

ti

)
uj =

n∑
i=1

m∑
j=1

tisj(vi + uj)

thus showing equality.
Now we switch to an H-description. We can write

P =

n⋂
i=1

H+
i and

m⋂
j=1

G+
j

where Hi, Gj are hyperplanes. Then P ∩Q is just

P ∩Q =

n⋂
i=1

H+
i ∩

m⋂
j=1

G+
j

which represents P ∩Q as an H-polytope. □

4. Exercises

Problem 1.1: Show that every compact convex set has an extreme point. Give an example of
a non-compact convex set with an extreme point.

Problem 1.2: Prove that x ∈ Aff(x1, . . . , xn) if and only if(
1
x

)
∈ R

(
1 1 . . . 1
x1 x2 . . . xn

)
and that x ∈ Conv(x1, . . . , xn) if and only if(

1
x

)
∈ R≥0

(
1 1 . . . 1
x1 x2 . . . xn

)
Problem 1.3: Let X,Y ⊆ Rd with |X| = |Y | = d+ 1. Assume X,Y are each affinely indepen-
dent sets. Prove that Conv(X) and Conv(Y ) are affinely isomorphic.

Problem 1.4: Prove that p1, . . . , pn ∈ Rd are affinely independent if and only if there do not
exist λ1, . . . , λn ∈ R, not all zero, such that

n∑
i=1

λipi = 0 and
n∑

i=1

λi = 0.

Problem 1.5: Let P,Q ⊂ R2 be two-dimensional polytopes (i.e. polygons). For each of the
following statements, either prove that they are true, or provide a counterexample.

(1) If P and Q have the same number of edges, then they are affinely isomorphic.
(2) If P and Q have the same number of edges, then they are combinatorially isomorphic.
(3) If P and Q are both triangles, then they are affinely isomorphic.
(4) If P is a square and Q is a parallelogram, then P and Q are affinely isomorphic. Begin

by convincing yourself that it makes no difference if you assume that the vertices of P
are {0, 1}2 and that (0, 0) is a vertex of Q.
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Problem 1.6: Prove that dim(Conv{v1, . . . , vn}) = rank(V̂ )− 1 where

V̂ =

(
1 1 . . . 1
v1 v2 . . . vn

)
Problem 1.7: Prove the unproven parts of Theorem 1.15.

Problem 1.8: Let P,Q ⊆ Rd be convex sets. Prove that (P +Q)∗ = P ∗ ∩Q∗.

Problem 1.9: Prove that the standard cube is indeed dual to the standard cross-polytope, as
the notation suggests.





CHAPTER 2

The face lattice

1. Preliminaries on partially ordered sets

A partially ordered set , or poset , is a pair (S,≤) consisting of a set S and relation ≤ on
S satisfying the following properties:

(1) Reflexivity: let x ∈ S. Then x ≤ x.
(2) Transitivity: let x, y, z ∈ S such that x ≤ y and y ≤ z. Then x ≤ z.
(3) Anti-symmetry: let x, y ∈ S. If x ≤ y and y ≤ x, then x = y.

Given a poset (S,≤) and x, y ∈ S, we use the notation x < y to mean x ≤ y and x ̸= y. Two
posets (S1,≤1) and (S2,≤2) are isomorphic if there exists a bijection ϕ : S1 → S2 such that
for all x, y ∈ S1, x ≤1 y if and only if ϕ(x) ≤2 ϕ(y). If x < y and x ≤ z ≤ y implies z = x
or z = y, then we say that x covers y and denote this by x ⋖ y. A partial order satisfying
the additional proper that x ≤ y or y ≤ x for all x, y ∈ S is called a total order . When S
is finite, we can represent (S,≤) using an order diagram . This is a directed graph G whose
vertices correspond to elements of S and has an arc x → y whenever x ⋖ y. When drawing an
order diagram, the convention is to draw things so that all arcs are oriented up, and then not
put arrows on the edges.

Example 2.1: The subsets of {1, 2, . . . , n} form a partially ordered set when ordered by inclu-
sion. We denote this poset by Bn and call it a boolean lattice . Given S, T ⊆ {1, . . . , n}, S⋖T
if and only if S ⊆ T with |T \ S| = 1. The order diagram of B3 is shown in Figure 2.1.1.

∅

{1} {2} {3}

{1, 2} {1, 3} {2, 3}

{1, 2, 3}

Figure 2.1.1. The boolean latticeB3 is the set of all subsets of {1, 2, 3}, partially
ordered by inclusion. Its order diagram is shown in this figure. This lattice is
both atomic and coatomic.

Given a poset (S,≤) and x, y, z ∈ S, we say that z is an upper bound of x, y if z ≥ x and
z ≥ y and a least upper bound if additionally z ≤ w for any other upper bound w of x, y.

15
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Figure 2.1.2. The order diagram of a poset that is not a lattice.

Lower bounds and greatest lower bounds are defined analogously. Least upper bounds and
greatest lower bounds are unique (see Problem 2.1). If every pair x, y ∈ S have both a least
upper bound and greatest lower bound, then (S,≤) is called a lattice . Not every poset is a
lattice - see Figure 2.1.2.

When (S,≤) is a lattice, we denote the least upper bound of x, y by x ∨ y and call it their
join , and the greatest lower bound by x∧y and call it themeet . Unsurprisingly, boolean lattices
are indeed lattices and the join of two elements is their union and the meet is their intersection.
The meet and join operations of any lattice each satisfy an associative law and together satisfy
two absorption laws. In fact, these two algebraic axioms are enough to completely characterize
lattices - see Problem 2.4.

Associativity of the meet and join operations allows us to extend them to arbitrary sets. In
particular, one can define

n∨
i=1

xi := x1 ∨ x2 ∨ · · · ∨ xn and

n∧
i=1

xi := x1 ∧ x2 ∧ · · · ∧ xn

for arbitrary finite sets. These operations can also be extended to infinite sets, but we will not
encounter any.

An element x of a poset (S,≤) is called a one-hat if x ≥ y for all y ∈ S and a zero-hat if
x ≤ y for all y ∈ S. We denote these symbolically by 1̂ and 0̂ and every finite lattice has one
of each (Problem 2.2). When (S,≤) has a 0̂, elements covering 0̂ are called atoms and when it
has a 1̂, elements covered by 1̂ are called coatoms. A lattice is atomic if every non-0̂ element
can be expressed as a join of atoms and coatomic if every non-1̂ element can be expressed as a
meet of coatoms. Boolean lattices Bn are both atomic and coatomic for all n. Every finite total
order is a lattice, but if it has four or more elements, then it is neither atomic nor coatomic.

In the next section, we will define a partially ordered set that one can associate to any
convex set, then show that in the case of polytopes, this poset is a lattice that is both atomic
and coatomic. The meet operation will be relatively easy to work with, but the join operation
less so. For this reason, we will need the following lemma that will enable us to assert the
existence of a join operation without having to work with it explicitly.

Lemma 2.2: Let (S,≤) be a finite poset with a 1̂ such that every pair of elements has a greatest
lower bound. Then every pair of elements has a least upper bound so (S,≤) is a lattice.

Proof. Let x, y ∈ S and define T to be the set of all upper bounds of x, y, i.e.

T := {z ∈ S : z ≥ x and z ≥ y}.

Since (S,≤) contains a 1̂, T is nonempty. Since S, and therefore T , is finite and each pair of
elements in T contains a greatest lower bound in S, there exist a greatest lower bound w ∈ S of
T . Since x and y are both lower bounds of T , x ≤ w and y ≤ w. In other words w ∈ T , i.e. w
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Figure 2.2.3. A lattice that is not graded.

is an upper bound of x and y. Since T is the set of all upper bounds of x and y, this implies w
is the least upper bound of x and y. □

2. The face lattice of a polytope

For each convex set C ⊆ Rd, we let F(C) denote the set of all faces of C, partially ordered
by inclusion. We call F(C) the face poset of C, and when C is a polytope, the face lattice
of C. As we shall soon see, our use of the word “lattice” is justified. Face lattices are a funda-
mental concept in the study of polytopes because they allow us to rigorously define the notion
of combinatorial equivalence of polytopes. In particular, two polytopes are combinatorially
equivalent if they have isomorphic face lattices.

The main goal of this section is to prove Theorem 2.3, a structure theorem for the face lattice
of a polytope. In order to do so, we must introduce a few more poset terms. Given a poset
(S,≤) and x, y ∈ S satisfying x ≤ y, we define the interval between x, y to be

[x, y] := {z ∈ S : x ≤ z ≤ y}.

The opposite of a poset (S,≤), is the poset (S,⪯) where x ⪯ y if and only if y ≤ x. A finite
lattice is graded if every maximal totally ordered subset has the same cardinality. In a graded
lattice (P,≤), we define the rank function r : S → N of (P,≤) recursively by

r(x) :=

{
0 if x = 0̂

r(y) + 1 if y ⋖ x.

This is well-defined because (S,≤) is graded. The rank of a graded lattice is the rank of 1̂.
The boolean lattice Bn is graded of rank n and the rank of each S ⊆ {1, . . . , n} is |S|. See
Figure 2.2.3 for an example of a lattice that is not graded.

Theorem 2.3: Let P ⊆ Rd be a k-dimensional polytope. Then:

(1) F(P ) is an atomic and coatomic graded lattice of rank k + 1
(2) The rank function of F(P ) is given by F 7→ dim(F ) + 1
(3) Given F,G ∈ F(P ) with F ⊆ G, [F,G] is the face lattice of a polytope of dimension

dim(G)− dim(F )− 1
(4) The opposite poset of F(P ) is F(P ∗).

We will break Theorem 2.3 and its proof into several smaller lemmas.

Lemma 2.4: Let C ⊆ Rd be convex. For any pair F1, F2 of faces of C, F1 ∩ F2 is a face of C.
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Proof. Let F1, F2 be faces of C and let F := F1 ∩ F2 Let x ∈ F and let y, z ∈ C such that
x ∈ ri(Conv(y, z)). Since F1 is a face, this implies y, z ∈ F1 and similarly for F2. So y, z ∈ F
and therefore F is a face of C. □

Lemma 2.5: Each polytope has finitely many faces, each of which is itself a polytope.

Proof. Let P ⊆ Rd be a polytope and let F ⊆ P be a face. Proposition 1.7 implies that
every extreme point of F is an extreme point of P . Lemma 1.12 implies that P , and therefore F ,
has only finitely many extreme points. Theorem 1.11 implies that F is the convex hull of these
finitely many extreme points, i.e. is a polytope. This argument also shows that the number of
faces of P is bounded above by 2k where k is the number of extreme points of P . In particular,
the number of faces of P is finite. □

Proposition 2.6: Let P ⊆ Rd be a polytope. Then F(P ) is a finite atomic lattice. Moreover,
given F1, F2 ∈ F(P ), F1 ∧ F2 = F1 ∩ F2.

Proof. That F(P ) is a finite lattice with meet operation given by intersection is an im-
mediate consequence of Lemmas 2.4, 2.5, and 2.2, and that F1 ∩ F2 is the maximal face of P
contained in both F1 and F2.

We now argue that F(P ) is atomic. Since the atoms of F(P ) are the extreme points of P ,
it suffices to show that each face F of P is the minimal face containing all of its extreme points.
Theorem 1.11 implies that F is the convex hull of its extreme points. Since the convex hull of
a set S is the minimal convex set containing S, this implies that F is the minimal subset of
P containing all of its extreme points. Since F is a face, this implies that F is moreover the
minimal face of P with this property.

Since F(P ) is an atomic lattice with finitely many atoms, F(P ) is finite. □

Lemma 2.7: Let P ⊆ Rd be a d-dimensional polytope with 0 ∈ ri(P ) so that P ∗ is a polytope
(c.f. Lemma 1.16). For each face F of P , define

F ′ := {a ∈ P ∗ : ax = 1 for all x ∈ F}.

Then the following hold:

(1) F ′ is a face of P ∗,
(2) the map F 7→ F ′ is a bijection, and
(3) if F,G are faces of P with F ⊆ G, then G′ ⊆ F ′.

Proof. Let a, b ∈ (Rd)∗ so that there exists c ∈ ri(Conv(a, b)) ∩ F ′. Assume a ∈ P ∗. Then
ax ≤ 1 for all x ∈ P . If a /∈ F ′, then there exists x ∈ F such that ax < 1. But since cx = 1 and
c = ta+ (1− t)b for some 0 ≤ t ≤ 1, this would imply bx > 1 and therefore that b /∈ P ∗. So F ′

is a face of P ∗.
For the second claim, note that we can apply this construction to the faces of P ∗. In

particular, (F ′)′ = F and so the map F 7→ F ′ is injective. By the same logic, the same map
applied to the faces of P ∗ is injective. Since P and P ∗ have finitely many faces by Lemma 2.5,
this implies that the map F 7→ F ′ is a bijection.

The third claim is immediate. □

Corollary 2.8: Let P ⊆ Rd be a d-dimensional polytope with 0 ∈ ri(P ). Then F(P ∗) is the
opposite poset of F(P ) and so F(P ) is coatomic.
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Lemma 2.9: Let P ⊆ Rd be a polytope and let v ∈ P be an extreme point. Proposition 2.11
implies that there exists a ∈ (Rd)∗ and c ∈ R such that ax ≤ c for all x ∈ P and {v} = {x ∈ P :
ax = c}. Let c0 < c such that ax ≤ c0 for all extreme points of P aside from v. Define

H := {x ∈ Rd : ax = c0} and Q := P ∩H.

Then F(Q) is isomorphic to the interval [v, P ] in F(P ).

Proof. For each face F of P containing v, define F ′ := F ∩ H. We claim that F ′ is a
face of Q. Indeed, Proposition 2.11 implies that there exist a1 ∈ (Rd)∗ and c1 ∈ R such that
F = P ∩H1 where H1 = {x ∈ Rd : a1x = c1} and a1x ≤ c1 for all x ∈ P and therefore for all
x ∈ Q. Then H1 ∩H is a hyperplane in H and since F ′ = Q ∩ (H1 ∩H) we then have that F ′

is a face of Q.
The map F 7→ F ′ is inclusion preserving, so if we show that it is a bijection, then it is the

desired poset isomorphism from the interval [v, P ] in F(P ) to F(Q). Given G ∈ F(Q), define

Ĝ := P ∩Aff(G ∪ {v}).

We claim that Ĝ is a face of P . Indeed, Proposition 2.11 implies that there exist a2 ∈ (Rd)∗

and c2 ∈ R such that G = {x ∈ Q : a2x = c2} and a2x ≤ c2 for all x ∈ Q. Additionally, for all
λ ∈ R, the following inequality holds with equality at G

(3) (a2 + λa)x ≤ c2 + λc0 for all x ∈ Q.

Define λ0 := (c2 − a2v)/(c − c0). The inequality in (3) becomes an equality at x = v when we
set λ = λ0. Given an extreme point v′ ̸= v of P ∩Aff(G∪{v}) then av′ < c0 and av = c > c0 so

v′′ :=
(av − c0)v

′ + (c0 − av′)v

av − av′
∈ P ∩H = Q.

Therefore, we have (a2 + λ0a)v
′′ ≤ c2 + λ0c0. Since (3) is an equality at v when λ = λ0, this

implies (a2+λ0a)v
′ = c2+λ0c0. Thus setting λ = λ0 makes (3) hold for all extreme points of P

and therefore for all of P . Thus Aff(G∪ {v})∩P = {x ∈ P : (a2 + λ0a)x ≤ c2 + λ0c0} is indeed
a face of P .

The proof is now complete by noting that the map G 7→ Ĝ is the inverse of F 7→ F ′. □

Proposition 2.10: Let P ⊆ Rd be a polytope. Then

(1) given F,G ∈ F(P ) with F ≤ G, the interval [F,G] is isomorphic to a face lattice of a
polytope of dimension dim(G)− dim(F )− 1, and

(2) F(P ) is graded with rank function r(F ) = dim(F ) + 1.

Proof. Given any face G of P , it follows from Proposition 1.7 and Lemma 2.5 that the
interval [∅, G] is isomorphic to F(G). So to prove the first claim, it now suffices to show that
the interval [F, P ] of F(P ) is isomorphic to the face lattice of a polytope for any face F of P .
This is clearly true for F = ∅ or when dim(P ) = −1, i.e. when P = ∅. Let v be any vertex of P .
Then [v, P ] is the face lattice of a polytope by Lemma 2.9. Therefore, so is [F, P ] for any face
F of P by induction on dim(P ).

Now, let ∅ = F−1 ⊊ F0 ⊊ · · · ⊊ Fk = P be a maximal totally ordered subset of F(P ). The
second claim now follows by induction on dimension since [F0, P ] is the face lattice of a poset
of dimension dim(P )− 1. □

With Proposition 2.10, we have now finished the proof of Theorem 2.3. We end this section
with an important implication.
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Proposition 2.11: Every face of a polytope is exposed.

Proof. Let P ⊆ Rd be a polytope and let F be a face. Since the face lattice of a polytope
is coatomic with facets as the coatoms (c.f. Theorem 2.3), there exist facets F1, . . . , Fk such that
F = F1 ∩ · · · ∩ Fk. Let a1, . . . , ak ∈ (Rd)∗ and b1, . . . , bk ∈ R such that aix ≤ bi holds for all
x ∈ P and Fi = {x ∈ P : aix = bi}. Then whenever x ∈ P , we have (a1+ · · ·+ak)x ≤ b1+ . . . bk.
Moreover F = {x ∈ Pi : (a1 + · · ·+ ak)x = b1 + . . . bk} and therefore F is an exposed face. □

3. Exercises

Problem 2.1: Show that least upper bounds and greatest lower bounds in a poset are unique.

Problem 2.2: Prove that every finite lattice has a 0̂ and 1̂.

Problem 2.3: For each of the following posets, determine which are lattices. Among those that
are, determine which are atomic and/or coatomic.

a b c d

abc ad bd cd

Problem 2.4: An algebraic lattice consists of a set S and two binary operations ∨ and ∧
satisfying the following two axioms:

(1) x ∨ (y ∨ z) = (x ∨ y) ∨ z and x ∧ (y ∧ z) = (x ∧ y) ∧ z for all x, y, z ∈ S (associativity)
(2) x ∨ (x ∧ y) = x and x ∧ (x ∨ y) for all x, y ∈ S (absorption).

Show that if (S,≤) is a lattice with join and meet operations ∨ and ∧, then (S,∨,∧) is an
algebraic lattice. Then, show that if (S,∨,∧) is an algebraic lattice, then there exists a partial
order ≤ on S that is a lattice with meet and join operations ∨ and ∧.

Problem 2.5: Define a partial order ≺ on N by x ≺ y if and only if for all primes p, if pn

divides x, then pn divides y.

(1) Show that (N,≺) is a lattice.
(2) Does (N,≺) have a 0̂ and/or a 1̂? If applicable, determine its atoms/coatoms.
(3) Is (N,≺) atomic and/or coatomic?
(4) Show that (N,≺) is isomorphic to the poset (S,⊆) where S is the set of all finite

multisets with elements in N, partially ordered by inclusion.



CHAPTER 3

Graphs of polytopes

1. General polytopes

Lemma 3.1: Let P ⊆ Rd be a polytope. Then

(1) the set of points in P maximizing a linear functional a ∈ (Rd)∗ is a face of P , and
(2) for every proper face F of P , there exists a linear functional maximized exactly at F .

Proof. Since P is compact, we can define c := maxx∈P ax. Then ax ≤ c for all x ∈ P so
P ∩{x ∈ Rd : ax = c} is a face of P and this is precisely where a is maximized. The second claim
is a restatement of the fact that all faces of a polytope are exposed (c.f. Proposition 2.11). □

Given a polytope P ⊆ Rd, the graph of P is the graph G(P ) whose vertices are the extreme
points of P that has an edge between vertices u and v if and only if Conv(u, v) is a face of P .
Given a linear functional a ∈ (Rd)∗, define Ga(P ) to be the partially directed graph obtained
from G(P ) directing an edge between u and v from u to v whenever au < av.

Lemma 3.2: Let P ⊆ Rd be a d-dimensional polytope and let v be an extreme point of P . Then
there exist neighbors u1, . . . , ud of v in G(P ) that are affinely independent.

Proof. Let N denote the set of neighbors of v in G(P ) and assume for the sake of contra-
diction that dim(Aff(N)) ≤ d− 2. Then dim(Aff(N ∪{v})) ≤ d− 1. Let Q be as in Lemma 2.9.
Since Q lies in the intersection of Aff(N ∪{v}) and a hyperplane H not containing v, this implies
that dim(Q) ≤ d− 2. But Lemma 2.9 and Theorem 2.3 together imply dim(Q) = d− 1. □

Theorem 3.3: Let P ⊆ Rd be a d-dimensional polytope and let a ∈ (Rd)∗ not equal to zero. Let
G be the graph of P with edges directed according to increasing a. Let F be the face of P where
a is maximized and let v be an extreme point of P not in F . Then there exists a directed path
in G from v to a point in F .

Proof. Let v be an extreme point of P and let u1, . . . , uk be the neighbors of v in G. Since
P is d-dimensional k ≥ d. If none of the edges vui are directed towards ui, then av ≥ aui for
each i. If v is not in F , then there exists a vertex w of P such that av < aw. For each t ∈ (0, 1],
the point vt := (1− t)v + tw satisfies av < avt. But there must exist some vt in the hyperplane
spanned by some d-subset of v’s neighbors. This gives a contradiction. □

Theorem 3.4 (Balinski 1961): Let G be the graph of a d-dimensional polytope. Then G is
d-connected.

Proof. Let P be a polytope. Since the graph of P is invariant under affine isomorphism,
we may assume that P is full-dimensional. Let v1, . . . , vd−1 be vertices of G, i.e. extreme points
of P . We consider two cases.

Case 1: There exists a proper face F of P containing v1, . . . , vd−1. By Lemma 3.1, there
exists a ∈ (Rd)∗ maximized at F . Direct the edges of G according to −a and let F ′ be the face

21
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of P where −a is maximized. Let u,w be vertices of G. The simplex algorithm gives us directed
paths from u to u′ and w to w′ where u′ and w′ lie in F ′. Since they move in the direction
of increasing −a, i.e. decreasing a, these paths will not contain v1, . . . , vd−1. By induction on
dimension, there exists a path in F ′ from u′ to w′ and since v1, . . . , vd−1 are not in F ′, this path
also does not contain any of these vertices. Thus the graph G \ {v1, . . . , vd−1} is connected.

Case 2: There is no proper face of P containing v1, . . . , vd−1. Fix an extreme point v0 of
P , distinct from v1, . . . , vd−1. Then there exists a hyperplane H = {x ∈ Rd : ax = c} containing
v0, . . . , vd−1. Let F, F ′ be the faces of P that respectively maximize and minimize a. Since
F, F ′ are proper faces of P , the cardinality of F ∩ {v1, . . . , vd−1} and F ′ ∩ {v1, . . . , vd−1} are at
most d− 2. By induction on dimension, the graphs of F and F ′ are both connected even after
removing v1, . . . , vd−1. Given a vertex v ̸= vi for all i = 0, . . . , d− 1, if av ≥ c then the simplex
algorithm applied to −a gives us a path from v to F ′, and if av ≤ c then the simplex algorithm
applied to a gives us a path from v to F ′. Finally, we the simplex algorithm also gives us paths
from v0 to both F and F ′. □

TODO: change to argument that doesn’t require LP stuff, see WhatsApp messages from
Louis

2. Graphs of three-dimensional polytopes

Definition 3.5: A graph G is planar if it can be embedded as a topological space into R2.
Stated simply, it means that you can draw it without crossing edges.

Proposition 3.6: Let P be a three-dimensional polytope. Then G(P ) is planar, three-connected,
and simple.

proof. Let P be a three-dimensional polytope. Three-connectedness of G(P ) follows from
Theorem 3.4. Simplicity of G(P ) follows from Theorem 2.3. We now prove that G(P ) is planar.
Let S ⊆ Aff(P ) be a 2-sphere around P . Project the vertices and edges of P radially to S. This
gives an embedding of G(P ) onto S. Let p ∈ S be a point not on this graph. Since a punctured
sphere is homeomorphic to a plane, this means that G(P ) can be embedded in the plane, i.e. is
planar. □

The converse of Proposition 3.6 is also true. For a proof, see [8, Chapter 4].



CHAPTER 4

Matroid fundamentals

1. Basic definitions

Definition 4.1: A matroid M consists of a finite set E, called the ground set , and a collection
I of subsets of E, called independent sets satisyfing the following three axioms:

(1) the empty set is independent, i.e. ∅ ∈ I,
(2) subsets of independent sets are independent, i.e. if I ∈ I and J ⊂ I then J ∈ I, and
(3) if I, J ∈ I such that |I| < |J |, then there exists e ∈ J \ I such that I ∪ {e} ∈ I.

The bases of M are the maximal independent sets, the spanning sets of M are the subsets
of E that contain a basis. The dependent sets of M are the subsets of E that are not
independent and the circuits of M are the inclusion-minimal dependent sets.

Definition 4.2: Let A be a matrix whose columns are indexed by a set E. The matroid
associated to A, denoted M(A), is (E, I) where S ⊆ E is in I if and only if the submatrix of A
obtained by restricting to the columns indexed by S has linearly independent columns.

What are the circuits of M(A) in general?
Here’s an example. Let A be the following matrix over any field, with columns a, b, c, d, e, f .

A :=


a b c d e f

1 1 1 0 0 0
−1 0 0 1 1 0
0 −1 0 −1 0 1


There are 16 bases, including e.g. {a, b, c} There are 7 circuits including e.g. {a, b, d}. In fact,
there is a very natural bijection between the columns of this matrix, and the six edges of the
complete graph on 4 vertices. In particular, this bijection is given by the edge labeling as follows:

a

b

c

d

e

f

Under this bijection, bases correspond to spanning trees and circuits correspond to cycles.

Definition 4.3: Let G be a graph with edge set E. The matroid associated to G, denoted
M(G), is the matroid on ground set E whose circuits are the simple cycles of G.

Proposition 4.4: Let A be a matrix with entries in a field F. Then M(A) is a matroid.
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Proof. The hard part is to prove that M(A) satisfies the third axiom. Let I, J be inde-
pendent subsets of columns of A so that |I| < |J |. If I ∪ {e} were dependent for all e ∈ J ,
then the linear span of I and I ∪ J would be the same. Thus the linear span of J would have
dimension at most |I|. But J is linearly independent, so its linear span has dimension |J | > |I|,
a contradiction. □

Definition 4.5: Let F be a field and let M be a matroid. We say that M is representable
over F means that there exists a matrix A with entries in F such that M = M(A). We say
that M is graphic if there exists a graph G such that M = M(G).

Given a field F and a finite set E, we let FE denote a vector space with a choice of basis
that is in bijection with E. Given another finite set V , we let FV×E denote the set of matrices
whose rows are indexed by V and whose columns are indexed by E.

Proposition 4.6: Let G be a graph. Then M(G) is representable over every field.

Proof. Let V and E denote the vertex and edge set of G and let F be a field. Fix an
orientation on the edges of G and let A denote its directed incidence matrix over F. In other
words, A ∈ FV×E is the matrix whose v, e entry is given over F as follows

av,e :=


0 if e is a loop or is not incident to v

1 if e is incident to v and directed towards v

−1 if e is incident to v and directed away from v.

We now show that M(A) = M(G). Let D ⊆ E be dependent in M(G). Then there exists
C ⊂ D that is a circuit in M(G). Order the elements of C as e1, . . . , en so that ei and ei+1

(cyclically ordered) share exactly one vertex. We say that ei is positively oriented if it is
directed toward the vertex that it shares with ei+1 and negatively oriented otherwise. Define
x ∈ FE by

xe :=


0 if e /∈ C

1 if e ∈ C and is positively oriented

−1 if e ∈ C and is negatively oriented.

Then Ax = 0, so C and therefore D is dependent in M(A).
Now let I ⊆ E be independent in M(G). Then the subgraph of G on edge set I is a forest.

Then the submatrix B of A obtained by restricting to the columns indexed by I has linearly
independent columns. Indeed, let v be a vertex of degree one in I and let e denote its incident
edge. Then the row of B indexed by v has exactly one nonzero entry at column e. We can
therefore remove this row and column to obtain a new matrix B′ which has linearly independent
columns if and only if B does. Since I \ {v} is also independent in M(G), B′ has linearly
independent columns by induction on |I|. So I is independent in M(A) as well. □

2. Cryptomorphism

We defined matroids in terms of their independent sets and then defined circuits in terms of
independent sets. Since the circuits of a matroid determine its independents sets, we could have
just as easily defined matroids in terms of their circuits and then defined independent sets to be
the subsets of the ground set not containing any circuit. Proposition 4.7 makes this precise. But
this isn’t the end of the story. In this section, we will define several other invariants of a matroid
and then show how one could have axiomatize matroids using them instead of independent sets.
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It is quite pleasing that one can do this, and this phenomenon is often referred to as matroid
cryptomorphism .

Proposition 4.7: Let E be a finite set and let C ⊆ 2E. Then there exists a matroid M with
circuit set C if and only if

(1) ∅ /∈ C,
(2) if C1, C2 ∈ C and C1 ⊆ C2, then C1 = C2, and
(3) given C1, C2 ∈ C are distinct and e ∈ C1 ∩ C2, there exists C3 ∈ C such that C3 ⊆

(C1 ∪ C2) \ {e}.

Proof. First assume C is the circuit set of some matroid M . Since ∅ is independent in M ,
C satisfies the first condition and since circuits are inclusion-minimal dependent sets, the second
condition is satisfied as well. To see that it satisfies the third, let C1, C2 ∈ C and let e ∈ C1∩C2.
If C1 ∪ C2 \ {e} does not contain a circuit then it is independent. Let f ∈ C2 \ C1 and let
I ⊆ C1 ∪ C2 be maximal with respect to being independent and containing C2 \ {f}. Since C1

is a circuit, some g ∈ C1 is not in I. Note that f ̸= g. But then

|I| ≤ |C1 ∪ C2| − 2 < |C1 ∪ C2 \ e|.

Applying the third independent set axiom contradicts maximality of I.
Now assume C satisfies the conditions of the proposition. Let I be the set of subsets of E

that contain no member of C. Then ∅ ∈ I and if J ∈ I and I ⊆ J , then I ∈ I. We now prove
the third independence axiom.

Suppose that I1, I2 ∈ I with |I1| < |I2|. Choose I3 ∈ I satisfying I3 ⊆ I1 ∪ I2 and |I3| > |I1|
such that |I1 \ I3| is minimal. If the third independence axiom fails for I1, I2, then I1 \ I3 is
nonempty so for the sake of contradiction let e ∈ I1\I3. For each f ∈ I3\I1 define Tf := (I3∪e)\f .
Then Tf ⊆ I1 ∪ I2 and |I1 \ Tf | < |I1 \ I3|. Our minimality assumption then implies Tf /∈ I so
there exists Cf ∈ C contained in Tf . Then f /∈ Cf and since I3 ∈ I, e ∈ Cf .

Now suppose g ∈ I3 \ I1. If Cg ∩ (I3 \ I1) = ∅ then Cg ⊆ ((I1 ∩ I3) ∪ e) \ g ⊆ I1 which is a
contradiction. So let g ∈ Cg ∩ (I3 \ I1). Since h /∈ Ch, we have Cg ̸= Ch. Since e ∈ Cg ∩ Ch,
there exists C ∈ C such that C ⊆ (Cg ∪ Ch) \ e. But Cg, Ch ⊆ I3 ∪ {e} so this implies C ⊆ I3
contradicting I3 ∈ I. □

Definition 4.8: Let M = (E, I) be a matroid. A basis of M is an inclusion-wise maximal
element of I.

Proposition 4.9: Let M = (E, I) be a matroid. If B1, B2 are bases of M , then |B1| = |B2|.

Proof. If |B1| < |B2| without loss of generality, then the third independence axiom implies
that B1 ∪ {y} is independent for some y ∈ B2 \B1. But this contradicts maximality of B1. □

Proposition 4.10: Let E be a finite set and let B ⊆ 2E. Then there exists a matroid M = (E, I)
whose bases are the elements of B if and only if

(1) B is nonempty, and
(2) Given B1, B2 ∈ B and x ∈ B1 \B2, there exists y ∈ B2 \B1 such that (B1 \ x)∪ y ∈ B.

Proof. First let M = (E, I) be a matroid with basis set B. Since I is nonempty, so is B.
Let B1, B2 ∈ B and x ∈ B1 \ B2. Since B1 \ x and B2 are both independent sets, there exists
y ∈ B2 \B1 such that B1 ∪ y is independent. Proposition 4.9 implies that B1 ∪ y is moreover a
basis.
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Now assume that B satisfies the given properties. Define I to be the set of all subsets of
elements of B. We now show that that (M, I) is a matroid. Indeed, the first basis axiom implies
∅ ∈ I and the second independence axiom is satisfied by construction. We proceed to show the
third.

We begin by claiming that all members of B have the same cardinality. Otherwise, let
B1, B2 ∈ B have |B1| > |B2| and assume |B1 \B2| is minimal with respect to this property. Let
x ∈ B1 \B2. There exists y ∈ B2 \B1 such that (B1 \x)∪y ∈ B. But this contradicts minimality
of |B1 \B2| so the claim is proven.

Now assume the third axiom fails for (E, I) and let I1, I2 ∈ I satisfy |I1| < |I2| and I1∪{e} /∈
I for all e ∈ I2. Then B has B1 containing I1 and B2 containing I2, Assume B2 is chosen so
that |B2 \ (I2 ∪B1)| is minimal. Then

(4) I2 \B1 = I2 \ I1

We claim that B2 \ (I2 ∪ B1) is empty. Otherwise, let x lie in this set. Then there exists
y ∈ B1 such that B3 := (B2 \x)∪y ∈ B. But then |B3 \(I2∪B1)| < |B2 \(I2∪B1)| contradicting
our choice of B2. This proves our claim. It then follows from our claim and (4) that

(5) B2 \B1 = I2 \ I1.

We now claim that B1 \ (I1 ∪ B2) is also empty. Again, let x ∈ B1 \ (I1 ∪ B2) for sake of
contradiction. Then there exists y ∈ B2 \B1 such that B4 := (B1 \x)∪ y ∈ B. Then I1∪ y ⊆ B4

so I1 ∪ y ∈ I. Since y ∈ B2 \B1, it follows from (5) that y ∈ I2 \ I1 which would contradict our
assumption that the third independence axiom fails. So B1 \ (I1 ∪B2) is indeed empty. We now
have the following

(6) B1 \B2 = I1 \B2 ⊆ I1 \ I2.

Proposition 4.9 implies that |B1| = |B2| and therefore that |B1 \ B2| = |B2 \ B1|. Then (5)
and (6) imply that |I1 \ I2| ≥ |I2 \ I1| and therefore |I1| ≥ |I2|, contradicting our assumption
that |I1| < |I2|. This implies that (E, I) is indeed a matroid. □

Definition 4.11: Let M = (E, I) be a matroid. The rank function of M is the function
ρ : 2E → Z defined by

ρ(S) := max
I∈I
I⊆S

|I|

The following proposition axiomatizes matroids in terms of their rank functions. The first
two properties should be relatively unsurprising. To make the third seem a little less exotic,
recall that the following holds for any subsets S, T of a set E

|S ∪ T | = |S|+ |T | − |S ∩ T |.

The third property below, called submodularity , specializes to this identity on the matroid
(E, 2E). The second property is called montonicity .

Proposition 4.12: Let E be a finite set and let ρ : 2E → Z. Then ρ is the rank function of a
matroid M = (E, I) if and only if

(1) 0 ≤ ρ(S) ≤ |S| for all S ⊆ E
(2) if S ⊆ T then ρ(S) ⊆ ρ(T ), and
(3) ρ(S ∪ T ) + ρ(S ∩ T ) ≤ ρ(S) + ρ(T ) for all S, T ⊆ E.
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Proof. First, assume that ρ is the rank function of a matroid M = (E, I). The reader
can verify that ρ satisfies the first two properties. For the third, let S, T ⊆ E and let I, J ′ be
maximum-cardinality independent subsets of S∩T and S∪T . By the third independence axiom,
there exists a maximum-cardinality independent subset J of S ∪ T that contains I. Since J ∩ S
and J ∩ T are independent, we have the following

ρ(S) + ρ(T ) ≥ |J ∩ S|+ |J ∩ T |
= |(J ∩ S) ∪ (J ∩ T )|+ |(J ∩ S) ∩ (J ∩ T )|
= |J ∩ (S ∪ T )|+ |J ∩ S ∩ T |
= |J |+ |I|
= ρ(S ∪ T ) + ρ(S ∩ T ).

Now, assume ρ satisfies the given properties and define

C := {C ⊆ E : ρ(C) = ρ(C \ e) = |C| − 1 for all e ∈ C}.

We will show that C is the circuit set of a matroid with rank function ρ. First observe that ∅ /∈ C
as ρ(∅) = 0. Given S ⊆ E and e ∈ E, monotonicity of ρ and the submodular inequality applied
to S and {e} gives

(7) ρ(S) ≤ ρ(S ∪ {e}) ≤ ρ(S) + 1.

To see the second circuit axiom, let C1, C2 ∈ C with C1 ⊂ C2. For sake of contradiction, assume
e ∈ C2 \C1. Then ρ(C2 \e) = |C2 \e| and therefore (7) implies that ρ(S) = |S| for all S ⊆ C2 \e.
But this contradicts ρ(C1) = |C1| − 1.

We now show that the third circuit axiom is satisfied. If C1, C2 ∈ C are distinct then
ρ(C1 ∩ C2) = |C1 ∩ C2| and ρ(Ci) = |Ci| − 1. Since ρ is monotone and submodular, we have

ρ((C1 ∪ C2) \ e) ≤ ρ(C1 ∪ C2)

≤ |C1|+ |C2| − 2− |C1 ∩ C2|
= |C1 ∪ C2| − 2.

The result now follows from the claim that if S ⊆ E satisfies ρ(S) = |S| − 1 then there exists
C ⊆ S such that C ∈ C. Indeed, let C ⊆ S have minimum cardinality such that ρ(C) = |C| − 1.
For each e ∈ C, the first property that ρ satisfies implies that ρ(C \ e) ≤ |C|−1. The claim now
follows from (7). □

We will use (7) again, so we state it below as a lemma.

Lemma 4.13: Let ρ : 2E → Z be the rank function of a matroid. Then ρ(S) ≤ ρ(S∪e) ≤ ρ(S)+1
for all S ⊆ E and e ∈ E.

The last cryptomorphic way to define matroids that we introduce in this chapter is through
their closure operators. Closure operators generalize the notion of span in a vector space. More
specifically if M = M(A) for some matrix A, then the closure operator of M is the function
that sends a subset of columns S of A to the set of columns spanned by S.

Definition 4.14: Let M be a matroid on ground set E with rank function ρ. The closure
operator σ : 2E → 2E is defined by

σ(S) = {x ∈ E : ρ(S) = ρ(S ∪ x)}.
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Proposition 4.15: Let E be a finite set and let σ : 2E → 2E. Then σ is the closure operator
of a matroid if and only if it satisfies the following properties:

(1) S ⊆ σ(S) for all S ⊆ E,
(2) σ(S) ⊆ σ(T ) whenever S ⊆ T ,
(3) σ is idempotent, i.e. σ(σ(S)) = σ(S) for all S ⊆ E, and
(4) if S ⊆ E and y ∈ σ(S ∪ x) \ σ(S), then x ∈ σ(S ∪ y).

Proof. First assume that σ is the closure operator of a matroid M on ground set E with
rank function ρ. It follows from the definition that σ satisfies the first property. For the second,
let x ∈ σ(S). The submodular inequality applied to T and S ∪ {x} gives

ρ(T ∪ {x}) + ρ(S) ≤ ρ(T ) + ρ(S ∪ {x}).

Since ρ(S) = ρ(S ∪ {x}), this implies ρ(T ∪ {x}) ≤ ρ(T ) and monotonicity of ρ then implies
ρ(T ∪ {x}) = ρ(T ) i.e. that x ∈ σ(T ). The first two properties imply that σ(S) ⊆ σ(σ(S)). To
get the reverse inclusion and therefore idempotency, let x ∈ σ(σ(S)) and note

ρ(S) ≤ ρ(S ∪ {x}) ≤ ρ(σ(S) ∪ {x}) = ρ(σ(S)) = ρ(S).

We now show the final property. Indeed, let S ⊆ E and x, y ∈ E such that y ∈ σ(S ∪ x) \ σ(S).
Lemma 4.13 then gives the following

ρ(S) + 1 ≥ ρ(S ∪ x) = ρ(S ∪ {x, y}) ≥ ρ(S ∪ y) = ρ(S) + 1

and therefore that x ∈ σ(S ∪ y).
Now assume that σ : 2E → 2E satisfies the given properties. Define

I := {I ⊆ E : e /∈ σ(I \ e) for all e ∈ I}.

We now show that I is the independent sets of a matroid with σ as its closure operator. Indeed,
∅ ∈ I is immediate. Now let I ∈ I and J ⊆ I. If e ∈ J then e /∈ σ(I \ e) ⊇ σ(J \ e) so J ∈ I.

We claim that if I ∈ I but I ∪ {x} /∈ I then x ∈ σ(I). Indeed, the definition of I implies
that there exists y ∈ I ∪ x such that y ∈ σ((I ∪ x) \ y). The claim is proven if y = x so assume
y ∈ I. Then the fourth closure axiom implies x ∈ σ((I \ y) ∪ y) = σ(I) so the claim is proven.

We now prove that I satisfies the third independence axiom. Assume for the sake of con-
tradiction that there exist I1, I2 ∈ I with |I1| < |I2| and I1 ∪ x /∈ I for all x ∈ I2 \ I1. Moreover,
assume I1, I2 have been chosen so that |I1 ∩ I2| is maximized with respect to this property.
Choose y ∈ I2 \ I1. Assume that I1 ⊆ σ(I2 \ y). Since σ(I1) ⊆ σ(I2) and I2 ∈ I, we have
y /∈ σ(I1). But then the claim implies that I1 ∪ y ∈ I contradicting our assumptions on I1, I2.
So there exists t ∈ I1 \ σ(I2 \ y). Then t ∈ I1 \ I2 and the claim implies I2 \ y ∪ t ∈ I. Our
minimality assumption then implies that there exists x ∈ (I2 \ y ∪ t) \ I1 such that I1 ∪ x ∈ I.
But as t ∈ I1 this would imply x ∈ I2 contradicting our assumption. □

3. The lattice of flats of a matroid

Definition 4.16: Let M be a matroid on ground set E with closure operator σ. A set S ⊆ E
is a flat or a closed set if S = σ(S). The lattice of flats of M , denoted L(M), is the set of
flats of M , partially ordered by inclusion.

Proposition 4.17: Let M be a matroid on ground set E with closure operator σ. Then L(M)
is a lattice. The meet and join operations are as follows

F1 ∧ F2 := F1 ∩ F2 and F1 ∨ F2 := σ(F1 ∪ F2).
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Proof. It follows from the closure axioms that F1 ∩ F2 is a flat of M since

σ(F1 ∩ F2) ⊆ σ(F1) ∩ σ(F2) = F1 ∩ F2 ⊆ σ(F1 ∩ F2)

and so this must be the inclusion-wise maximal flat contained in F1 and F2. Similarly, σ(F1∪F2)
is by definition the inclusion-wise minimal flat containing both F1 and F2. □

Definition 4.18: A lattice L is geometric if it is atomic and graded with a rank function ρ
satisfying the following for all x, y ∈ L

ρ(x ∨ y) + ρ(x ∧ y) ≤ ρ(x) + ρ(y).

Proposition 4.19: Let M be a matroid with rank function ρ. Then L(M) is a geometric lattice
with rank function F 7→ ρ(F ).

Proof. Let σ be the closure operator of M and let E be the ground set. Atoms of L(M)
are the flats of the form σ(x) for x ∈ E. Given a flat F of M and a maximal independent subset
I of F , F = σ(I). Thus F is the join of the σ(x) as x ranges over I. So L(M) is atomic.

We now show that L(M) is graded with the desired rank function. The inequality in Defini-
tion 4.18 will then follow immediately from submodularity of ρ. Let I be the set of independent
subsets of M . Given any S ⊆ E, the pair (S, {I ∈ I : I ⊆ S}) is a matroid. Thus by induction
on |E|, it suffices to show that the length of any maximal chain in L(M) is ρ(E). Indeed, let

∅ = F0 ⊊ F1 ⊊ · · · ⊊ Fr = E

be a maximal chain in L(M). For i = 1, . . . , r, fix some x ∈ Fi \ Fi−1. Then {x1, . . . , xr} is
an independent set. Otherwise, if i is the minimal i such that {x1, . . . , xi} is not independent,
then xi ∈ σ(x1, . . . , xi−1) ⊆ Fi−1. This implies r ≤ ρ(E). There exists an independent set of M
with ρ(E) elements so if r < ρ(E), then the third independence axiom implies that there exists
y ∈ E \{x1, . . . , xr} such that {x1, . . . , xr, y} is independent. But as Fr = E is a flat, this would
imply y /∈ E, a contradiction. □

Theorem 4.20: A lattice L is geometric if and only if there exists a matroid M such that L is
isomorphic to L(M).

Proof. We already saw that L(M) is a geometric lattice for any matroid M so assume L
is a geometric lattice. If 0̂ = 1̂ in L, then take M = U0,0. Otherwise, L has a nonempty set E
of atoms and let r be the rank function of L. Define the function ρ : 2E → Z as follows

ρ(S) := r

(∨
e∈S

e

)
.

We show that ρ is the rank function of a matroid M by verifying the conditions of Proposi-
tion 4.12. Indeed, the first condition follows immediately. If S ⊆ T then the join of the elements
in T is an upper bound for the join of the elements in S so ρ(S) ≤ ρ(T ). Submodularity of ρ
follows immediately from the inequality in Definition 4.18 for r.

It remains to show that L(M) and L are isomorphic as posets. Indeed, define f : L → L(M)
by X 7→ {e ∈ E : e ≤ X}. To see that f(X) is indeed a flat of M for each X ∈ L, let σ denote
the closure operator of M and let y ∈ σ(f(X)). Then ρ(f(X) ∪ y) = ρ(f(X)), so

r

∨
e≤X

e

 = r

y ∨
∨
e≤X

e

 .
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Combining this with the fact that y∨
∨

e≤X e ≥
∨

e≤X e in L gives us that y∨
∨

e≤X e =
∨

e≤X e

i.e. that y ≤ X in L. So f(X) is indeed a flat of M . By construction, X ≤ Y implies
f(X) ⊆ f(Y ). Since L is atomic, f is one-to-one.

We now show that f is onto. Let F be a flat of M and define X ∈ L by X :=
∨

e∈F e. We
claim that F = f(X). Let e ∈ F . Then e ≤ X in L so F ⊆ f(X). Now let g ∈ f(X) i.e. g ≤ X
in L. This implies that g ∨X = X in L so r(g ∨X) = r(X) and therefore that ρ(g ∪F ) = ρ(F ).
Since F is a flat, this implies g ∈ F so we now have f(X) ⊆ F and therefore equality. □

Definition 4.21: A matroid is simple if it has no loops or parallel elements. Given a matroid
M , the simplification of M is the matroid obtained from M by deleting all loops and all but
one element from each parallel class.

Definition 4.22: A hyperplane of a matroid M on ground set E with rank function ρ is a
flat with rank ρ(E)− 1.

Matroids can be axiomatized in terms of their hyperplanes (c.f. Problem 5.3).



CHAPTER 5

Visualizing matroids

1. Matroids of rank three

Proposition 5.1: Let E ⊂ Rd be a finite set. The subsets of E that are affinely independent
are the independent sets of a matroid.

Proof. Let A be the matrix obtained from E by adding a new coordinate to each element
of E and setting it equal to 1. Then a subset of E is affinely independent if and only if the
corresponding columns of A are linearly independent. □

Proposition 5.2: Let E be a finite set of size at least 3. Let Λ be a collection of proper subsets
of E, each of size at least 3 such that given L1, L2 ∈ Λ, |L1 ∩ L2| ≤ 1. Let Λ′ consists of the
pairs of points in E that are not in any element of Λ. Then H := Λ∪Λ′ is the set of hyperplanes
of a matroid of rank 3.

Proof. We verify the hyperplane axioms (c.f. Problem 5.3). The first two axioms follow
immediately from our assumptions. For the third, let L1, L2 ∈ H with L1 ̸= L2 and let e /∈
L1 ∪ L2. We split into three cases.

Case 1: L1, L2 ∈ Λ′:
Case 2: L1, L2 ∈ Λ:
Case 3: L1 ∈ Λ and L2 ∈ Λ′: □

(1) Non-fano matroid
(2) Fano matroid

Proposition 5.3: Let M be a matroid of rank 3, representable over a field F, such that every
line of the non-fano matroid is dependent in M . Then M is the fano matroid if the characteristic
of F is 2 and the non-fano matroid otherwise. In particular, the fano matroid is representable
only over fields of characteristic two and the non-fano matroid is representable only over fields
of characteristic other than two.

Proposition 5.4: Let M be a matroid on ground set E and let S ⊂ E be a circuit and a
hyperplane of E. Let B be the set of bases of M . Then B ∪ S is the set of bases of a matroid.

Proof. First note that the cardinality of S is the rank in M of E, i.e. the cardinality of
any basis. Let B be a basis of M . For the two cases B1 = B,B2 = S and B1 = S,B2 = B, we
must show that for all x ∈ B1 \B2, there exists a y ∈ B2 \B1 such that B1 ∪ y \ x is a basis of
M . In the first case, since S is a hyperplane, S ∪ x contains a basis. Since |S| = |B|, this basis
is obtained by removing a single element of S \ x. In the second case, since S is a circuit, S \ x
is independent for any x ∈ S. Since |B| = |S|, there exists some y ∈ B such that S \ x ∪ y is
independent in M , i.e. a basis of M . □

31
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Figure 5.2.1. A matroid of rank three that is representable over R but not Q.
This is often called the “Perles matroid.” The dotted point, along with the four
points along the outside, are the vertices of a regular pentagon.

2. Projective geometry

Definition 5.5: Given a field F, the d-dimensional projective space over F, denoted Pd(F),
is the vector space Fd+1\{0}modulo the equivalence relation x ∼ y if x = λy for some λ ∈ F\{0}.
When F is clear from context or not important we will write Pd instead of Pd(F).

We will often refer to Fd as d-dimensional affine space . Given a point x ∈ Fd+1 \ {0},
we let [x] denote its corresponding point in Pd, i.e. its equivalence class modulo ∼. Since the
pairwise ratios of the coordinates of x determine [x], a point [x] in Pd(F) is often written out as
[x0 : x1 : · · · : xd]. For i = 0, . . . , d, define

Ai := {[x] ∈ Pd : xi ̸= 0}.

Then each [x] ∈ Ai has a unique equivalence class (under ∼) representative x̂ with xi = 1, so
we may identify Ai with the affine space Fd via the map [x] 7→ (x̂j : j ̸= i). Since each element

of Pd lies in some Ai, we could have alternatively constructed Pd by gluing together d+1 copies
of Fd in a particular way. If T : Fd+1 → Fd+1 is linear, then the map [x] 7→ [Tx] is well-defined.
With this in mind, we define a projective transformation to be a map Pd → Pd of the form
[x] 7→ [Tx] where T : Fd+1 → Fd+1 is an invertible linear map. Since we can naturally identify
Fd with A0, we will view affine space as a subset of projective space, thinking of Pn \ A0 as
“points at infinity.”

TODO

• Define projective equivalence for point configurations in Pn

• Projective equivalence implies combinatorial equivalence
• Give conditions for converse to hold
• Write special case for d = 2 and use to prove that the Perles matroid is not Q-realizable

3. Exercises

Problem 5.1: Describe the rank function and closure operator of a graphic matroid in graph-
theoretic terms.
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Problem 5.2: Prove that a graph with n vertices, c connected components, and at least n−c+1
edges has a cycle. Then let G be a graph with edge set E and show that its matroid M(G) has
the following rank function

ρ(S) = |V (S)| − c(S)

where V (S) denotes the set of vertices of G that are incident to some edge in S and c(S) denotes
the number of connected components of the graph on vertex set V (S) and edge set S.

Problem 5.3: Let E be a finite set and let H ⊆ 2E . Prove that H is the set of hyperplanes of
a matroid if and only if

(1) E /∈ H,
(2) if H1, H2 ∈ H with H1 ⊆ H2, then H1 = H2, and
(3) if H1, H2 ∈ H are distinct and e /∈ H1 ∪ H2, then there exists H ∈ H such that

H ⊇ (H1 ∩H2) ∪ e.

Problem 5.4: Define A as follows and determine whether or not the lattice of flats of M(A)
is coatomic

A =

1 0 0 0
0 1 1 1
0 0 1 2

 ∈ R3×4.

Problem 5.5: Theorem 4.20 says that the natural map from matroids to geometric lattices is
onto. Is it one to one? Either prove that it is, or give an example of two different matroids with
the same geometric lattice.

Problem 5.6: Prove that U2,n is representable over a field with q elements if and only if
q ≥ n− 1.





CHAPTER 6

Matroid duality and minors

1. Duality basics

Proposition 6.1: Let M be a matroid on ground set E and define C∗ by

C∗ = {E \H : HisahyperplaneofM}.

Then C∗ is the set of circuits of a matroid.

Proof. The above is equivalent to showing that the hyperplanes H of matroid satisfy the
following properties

(1) E /∈ H,
(2) if H1, H2 ∈ H with H1 ⊆ H2, then H1 = H2, and
(3) if H1, H2 ∈ H are distinct and e /∈ H1 ∪ H2, then there exists H ∈ H such that

H ⊇ (H1 ∩H2) ∪ e.

The first property follows from the fact that ρ(H) = ρ(E) − 1 for all H ∈ H. The second
property follows from the fact that ρ(H ∪ {x}) = ρ(E) for every x /∈ H. For the third property,
note that ρ(H1 ∩H2) ≤ ρ(E) − 2 so ρ({e} ∪ (H1 ∩H2)) ≤ ρ(E) − 1 and is therefore contained
in a hyperplane. □

Definition 6.2: Let M be a matroid. The matroid with circuit set C∗ as in Proposition 6.1 is
called the dual of M and is denoted M∗.

Gadgets associated to M∗ are associated to M as well, and we use the same name but with
the prefix “co” attached. For example, the circuits of M∗ are called the cocircuits of M . We
define cospanning etc. sets similarly.

Example 6.3: The cocircuits of the graphic matroid of a graph are the minimal edge subsets
whose removal increases the number of connected components.

Proposition 6.4: Let M be a matroid. Then the coindependent sets of M are the complements
of the spanning sets of M and the cobases of M are the complements of the bases of M .

Proof. The second statement follows immediately from the first. Let M be a matroid on
ground set E and let S ⊆ E. The first claim now follows from the following chain of equivalences:
S is spanning iff S is not contained in a hyperplane of M iff E \ S does not contain a cocircuit
iff E \ E is coindependent. □

Corollary 6.5: Let M be a matroid. Then M∗∗ = M .
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2. Duals of representable matroids

We begin by establishing some matrix notation. For any integer r ≥ 1, the r × r identity
matrix is denoted Ir. Let A be a matrix whose columns are indexed by E. For any S ⊆ E, AS

denotes the column submatrix of A on column set S.

Lemma 6.6: Let M be a rank-r matroid on ground set E with |E| = n. If M is representable

over a field F, then (up to reordering columns) there exists a matrix D ∈ Fr×(n−r) such that
M = M(A) where

A =
(
Ir D

)
.

Proof. Let A be such that M = M(A). Then A has rank r. By removing all but r linearly
independent rows, we may assume without loss of generality that A has r rows. By reordering
columns if necessary, we may also assume that the first r columns of A are linearly independent.
Since elementary row operations do not affect the matroid of a matrix, we may row-reduce A to
get it into the desired form. □

Theorem 6.7: Let M be representable over a field F. Then M∗ is representable over F.

Proof. Let A ∈ Fr×n be an F-representation of M as in Lemma 6.6 and define

B :=
(
−DT In−r

)
.

Let S be a subset of r columns of A. Observe that the column submatrix of A indexed by S has
determinant that is plus or minus the column submatrix of B indexed by {1, . . . , n} \ S. The
theorem now follows from Proposition 6.4. □

3. Matroid minors and graphic duals

Definition 6.8: Given a matroid M = (E, I) and e ∈ E, define the deletion of e in M ,
denoted M \ e, to be the matroid on ground set e \ E with independent sets

{I ∈ I : e /∈ I}
and the contraction of e in M by M/e := (M∗ \ e)∗. A matroid N is a minor of M if
and only if N can be obtained from M by a sequence of deletions and contractions. A minor is
proper if this sequence is nonempty.

Proposition 6.9: Let M = (E, I) be a matroid and let e ∈ E. If e is a loop or a coloop then
M/e = M \ e. Otherwise:

(1) the independent sets of M/e are all sets of the form I \ e where I ∪ {e} ∈ I, and
(2) the circuits of M/e are all sets of the form

(a) C where C is a circuit of M not containing e, or
(b) C \ {e} where C is a circuit of M containing e.

Proposition 6.10: Let M be a matroid. If M is representable over a field F then any minor
of M is also representable over F. If M is graphic, then so is any minor of M .

Proof. Assume M is representable over F. Then M \ e is as well because a representation
for M becomes a representation for M \e by removing the column indexed by e. Representability
of M/e now follows from Theorem 6.7.

Now assume M = M(G) for a graph G = (V,E) and let e ∈ E. Removing e from G gives
a graph representing M \ e. If e is a loop or a coloop of M then M/e = M \ e. Assume e is
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neither a loop nor a coloop of M . Let V/e be the set obtained from V by removing the vertices
u, v of e and replacing them with a single vertex w /∈ V and let E/e be the set obtained from
E by removing e and for each f ∈ E incident to u or v, replacing u and v with w. Define the
graph G/e := (V/e,E/e). Then M/e = M(G/e). □

The dual of a graphic matroid need not be graphic which is why we had to use a different
strategy to prove Proposition 6.10 in the graphic case. In particular, the following is true.

Proposition 6.11: Let G be the complete graph K5 or the complete bipartite graph K3,3 and
let M = M(G). Then M∗ is not graphic.

Proof. We do the case G = K5 leaving K3,3 as an exercise. Assume that M∗ = M(G) for
some graph G. If G is disconnected, we may glue connected components together along single
vertices without affecting cycles, and therefore the matroid structure. We will thus without loss
of generality assume G is connected.

Since M(K5) has rank 4 and 10 elements, its dual has rank 6 and 10 elements. So G has
10 edges, and since it is connected, it has 7 vertices. If every vertex of G has degree at least 3
then G has at least 10 ∗ 3/2 = 15 > 10 edges. So G must have a vertex of degree 2, incident to
edges e, f . This implies that {e, f} is a cocircuit of G and therefore a circuit of M(K5). This is
a contradiction as K5 does not have parallel edges. □

Theorem 6.12: Let G be a graph. Then M(G)∗ is graphic if and only if G is planar.

Proof sketch. If G is planar, then M(G)∗ is the matroid of the planar dual of G. If G
is not planar, then G a graph minor isomorphic to K5 or K3,3 (this is a deep theorem that
is outside the scope of this text). Propositions 6.10 and 6.11 then imply that M(G)∗ is not
graphic. □

Let B be a basis of a matroid M on ground set E. Then for every e ∈ E \ B, there exists
a unique circuit CM (B, e) contained in B ∪ {e} which we call the fundamental circuit of e
with respect to B. Note that e ∈ CM (B, e).

Theorem 6.13: Let M be a matroid on ground set E. Then M is representable over F2 if and
only if M does not have a minor isomorphic to U2,4.

Proof. The matroid U2,4 is not representable over F2 (c.f. Problem 5.6). Proposition 6.10
thus implies that any matroid with U2,4 as a minor is not representable over F2.

Now assume that M is not representable over F2. In light of Proposition 6.10 we may assume
without loss of generality that every proper minor of M is representable over F2. In particular,
we can assume that M has no one- nor two-element cocircuits. Thus if ρ is the rank function of
M , then ρ(E) = ρ(E \ {e, f}) for all e, f ∈ E.

Let A =
(
Ir D

)
be an F2-representation of M \ {e, f} as in Lemma 6.6. Since M \ e and

M \ f are both binary, there exist vf , ve ∈ Fr
2 such that M \ e is represented by

(
Ir D vf

)
and M \ f by

(
Ir D ve

)
. Let M ′ be the matroid on the columns of

(
Ir D ve vf

)
. Then

M \ e = M ′ \ e and M \ f = M ′ \ f . Let Z ⊆ E be a minimal subset that is independent in one
of M,M ′ but not the other. Then x, y ∈ Z and Z is a circuit in whichever M,M ′ independence
fails. So let Mi denote whichever has Z as an independent set and Mc whichever has Z as a
circuit.

We claim that if J is independent in Mi containing Z then J = {e, f}. Before proving this
claim, we show how it implies the desired result. It follows from our claim that Z = {e, f} since
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{e, f} ⊆ Z ⊆ J = {x, y}. It then follows that the rank of Mi is 2 since some basis of Mi contains
Z as it is independent and the only independent set of Mi containing Z is {e, f} by our claim.
We now know that Mi,Mc,Mi \ {e, f} and Mc \ {e, f} have rank 2 and thus Mi and Mc have
at least four elements. Since M is simple and equal to either Mi or Mc, M = U2,n for some
n ≥ 4. If n > 4 then deleting n − 4 elements yields a minor isomorphic to U2,4 which is not
F2-representable. But M was assumed to have no proper minor that was not F−2-representable
so M = U2,4.

Now we prove the claim. Suppose the claim fails, i.e. that J is independent in Mi containing
Z and that S := J \ {x, y} ≠ ∅. Then S is independent in Mi \ {e, f} and Mc \ {e, f} and
therefore in Mi,Mc. Thus the matroids Ni := Mi/S and Nc := Mc/S have the same rank. Since
each of Ni, Nc is a proper minor either of M ′, which is F2-representable, or of M which has
F2-representable proper minors, Ni and Nc are both F2-representable. Then {e, f} is dependent
in Nc and independent in Ni so Nc ̸= Ni. However, Ni \ {e} = Nc \ {e} and Ni \ {f} = Nc \ {f}
so Ni \ {e, f} = Nc \ {e, f}.

Now let B be a basis of this matroid. Then B is also a basis of Ni and Nc. Indeed, since Ni

and Nc have the same rank, B can only fail to be a basis for one if it fails to be a basis for both.
In this case, since B fails to be a basis for Ni, then the rank of Ni \{e, f} is strictly less than the
rank of Ni (and thus the rank of Nc) thus implying that {e, f} contains a cocircuit of Ni and Nc,
contradicting our assumption thatM has no cocircuit of size one or two. Since Ni\{e} = Nc\{e}
and Ni \ {f} = Nc \ {f}, CNi(B, g) = CNc(B, g) for every g in the common ground set of Ni

and Nc that does not lie in B. Since Ni and Nc are binary, this implies that Ni = Nc (to see
this, think about constructing a representation of either over F2 given the fundamental circuits
with respect to B). But we already saw that Ni ̸= Nc, so this is a contradiction thus proving
our claim. □

4. Exercises

Problem 6.1: Given a matroid M on ground set E and a basis B, prove that for each e ∈ E\B,
there exists a unique circuit in B ∪ {e}. Use this to prove that for any connected graph G with
spanning tree T , for each e ∈ T (this is not a typo), there exists a unique minimal cut of G
whose only edge in common with T is e.

Problem 6.2: Let A ∈ Fr×n have rank r and let B ∈ F(n−r)×n have rank n − r and assume
that ABT = 0. Show that there exists a nonzero λ ∈ F such that for any S ⊆ E of size r, if
AS denotes the column-submatrix of A on columns indexed by S and B{1,...,n}\S denotes the
column-submatrix of B on columns indexed by {1, . . . , n}\S, then det(AS) = λ det(B{1,...,n}\S).

Problem 6.3: Prove Proposition 6.9 and describe the rank function, closure operator, and
lattice of flats of M/e.

Problem 6.4: Prove that M(K3,3)
∗ is not graphic.

Problem 6.5: Prove directly, without using matroid duality, that M/e is representable over
a field F whenever M is [hint: obtain a representation of M/e from a representation of M by
projecting all columns not corresponding to e onto the hyperplane orthogonal to e].



CHAPTER 7

Oriented matroids

1. Ordered fields

Definition 7.1: An ordered field consists of a field F and a set P ⊆ F called positive
elements satisfying the following properties:

(1) −1 /∈ P ,
(2) x+ y ∈ P and xy ∈ P whenever x, y ∈ P ,
(3) x2 ∈ P for all x ∈ F, and
(4) x ∈ P or −x ∈ P for all x ∈ F, i.e. F = P ∪ (−P ).

As the name suggests, every ordered field comes naturally equipped with a total order. More
specifically, one can define an order ≤ by x ≤ y if and only if y − x ∈ P . The quintessential
example of an ordered field is R or any of its subfields.

Proposition 7.2: Let F be an ordered field with positive elements P . Then:

(1) 1 ∈ P ,
(2) P ∩ (−P ) = {0}, and
(3) if K ⊆ F is a subfield then K is also ordered with positive elements P ∩K.

Proof. The first claim follows from ordered field axioms (1) and (4) and the third claim
is immediate. Ordered field axiom (4) and the fact that 0 = −0 holds in any field implies that
0 ∈ P ∩ (−P ). For the sake of contradiction, let x ∈ P ∩ (−P ) and assume x ̸= 0. Axiom (3)
then implies 1

x2 ∈ P and since −x ∈ P , (2) implies − 1
x ∈ P . Since x ∈ P , this would imply

−1 ∈ P contradicting (1). □

Given an ordered field F with positive elements P , the sign of x ∈ F is defined as follows

sign(x) :=


+ if x /∈ (−P )

− if x /∈ P

0 if x = 0.

Given v ∈ Fn, we define sign(v) ∈ {+,−, 0}n by sign(v)i := sign(vi). The support of some
σ ∈ {+,−, 0}n is the subset S ⊆ {1, . . . , n} such that σi ̸= 0 if and only if i ∈ S. Given a matrix
A ∈ Fr×n, the signed vectors of A is the set

{sign(v) : Av = 0}

and the signed circuits of A are the signed covectors of minimal nonempty support. The set of
signed circuits of a matrix is highly structured. Their supports must satisfy the circuit axioms
for a matroid, but even more is true and this motivates the definition of an oriented matroid,
which we will provide in the next section.
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2. Oriented matroid axiomatics

Let F be a field or the set {+,−, 0} and let E be a finite set. We use the notation SE

to denote the set of functions E → F which one should think of as the set of vectors with
coordinates indexed by E whose coordinates take values in F . Given x ∈ FE , the support of
x, denoted supp(x), is the subset S ⊆ E satisfying xe = 0 if and only if e ∈ S.

Given a finite set E and sign vectors σ, τ ∈ {+,−, 0}E , the composition σ ◦ τ is the sign
vector defined by

(σ ◦ τ)e :=

{
σi if σi ̸= 0

τi otherwise.

Note that if v, w ∈ FE and if ε > 0 is sufficiently small, then

sign(v + εw) = sign(v) + sign(w).

Given an oriented matroid O = (E, C), the signed vectors of O is the set

{η ∈ {+,−, 0}E : η = σ ◦ τ for some σ, τ ∈ C}.

Definition 7.3: An oriented matroid O = (E,V) consists of a finite set E, called the ground
set and a set V ⊂ {+,−, 0}E called the signed vectors satisfying

(1) the all-zeros vector is in V,
(2) if σ ∈ V then −σ ∈ V,
(3) if σ, τ ∈ V, then σ ◦ τ ∈ V, and
(4) given σ, τ ∈ V with σ ̸= −τ and e ∈ supp(σ) ∩ supp(τ) with σe = −τe, there exists

η ∈ V such that
(a) ηe = 0,
(b) if ηf = + then σf = + or τf = +,
(c) if ηf = − then σf = − or τf = −,
(d) if σf , τf ∈ {+, 0}, not both zero, then ηf = +, and
(e) if σf , τf ∈ {−, 0}, not both zero, then ηf = −.

Proposition 7.4: Let F be an ordered field and let A ∈ Fr×n. If E denotes the column set of
A and V is the signed vectors, then O = (E,V) is an oriented matroid.

Proof. For any matrix A, it is true that A0 = 0 and that if Ax = 0 then A(−x) = 0.
Thus the first two axioms are satisfied. Now let x, y be such that Ax = Ay = 0. Then
sign(x) ◦ sign(y) = sign(x + εy) for ε > 0 sufficently small so the third axiom is satisfied. For
the fourth axiom, assume that e ∈ supp(x) ∩ supp(y) and that sign(x)e = −sign(y)e. Define

z := x+
|xe|
|ye|

y.

Then sign(z) satisfies the desired conditions for σ = sign(x) and τ = sign(y). □

The oriented matroid defined from a matrix A with entries in an ordered field as in Propo-
sition 7.4 is denoted O(A). If O = O(A) for some F-matrix A, then O is said to be F-
representable .

Define the relation ⪯ on {+,−, 0}E by σ ⪯ τ if σe = + implies τe = + and σe = − implies
τe = −. Then ⪯ is symmetric, transitive, and anti-symmetric i.e. a partial order.
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Proposition 7.5: Let O = (E,V) be an oriented matroid. Given σ ∈ V, there exist signed
circuits τ1, . . . , τk such that σ = τ1 ◦ · · · ◦ τk.

Proof. Let {τ1, . . . , τk} be the set of all signed circuits satisfying τ ≺ σ. For each i =
1, . . . , k and each e ∈ E, either τ ie = σe or τ ie = 0. Therefore τ1 ◦ · · · ◦ τk ≺ σ. It now suffices
to show that for each e ∈ supp(σ), there exists some circuit τ ≺ σ satisfying τe = σe. So
let e ∈ supp(σ) and let τ ∈ V have minimal support such that τ ⪯ σ and τe ̸= 0. If for all
f ∈ supp(σ) we have either τf = 0 or τf = σf Otherwise, signed vector axiom (4) applied to τ
and σ at f contradicts our minimality assumption. □

Proposition 7.6: Let O = (E,V) be an oriented matroid with signed circuits C. Then supp(C) :=
{supp(σ) : σ ∈ C} is the circuit set of a matroid.

Proof. That supp(C) satisfies the first two circuit axioms is immediate from the fact that
the all-zero signed vector is not a signed circuit, and that signed circuits are support-minimal.
We now show that supp(C) satisfies the third. Indeed, let σ, τ ∈ C with e ∈ supp(σ) ∩ supp(τ).
Then signed vector axiom (4) implies there exists some ρ ∈ V such that supp(ρ) ⊆ supp(σ) ∪
supp(τ) \ {e}. Proposition 7.5 implies that ρ = η1 ◦ · · · ◦ ηk for η1, . . . , ηk ∈ C. Then supp(η1)
certifies that the desired axiom is satisfied. □

Given an oriented matroid O, we write M(O) to denote the matroid from Proposition 7.6.

Proposition 7.7: Let O be an oriented matroid and let F be an ordered field. If O is F-realizable,
then so is M(O).

Proof. If O = O(A) for some matrix A, then M(O) = M(A). □

3. Duality

Given sign vectors σ, τ ∈ {+,−, 0}E we say that σ and τ are orthogonal and write σ ·τ = 0
if either supp(σ) ∩ supp(τ) = 0, or if there exist e, f ∈ supp(σ) ∩ supp(τ) such that σe = τe and
σf = −τf . Given an oriented matroid O = (E,V), the dual oriented matroid O∗ is the pair
(E,V∗) where

V∗ := {σ ∈ {+,−, 0} : σ · τ = 0 for all τ ∈ V}.

Proposition 7.8: Let F be an ordered field and let A ∈ Fr×n have rank r. Let B ∈ F(n−r)×n)

have rank n− r and assume ABT = 0. Then O(A)∗ = O(B).

Proposition 7.9: Let O := (E,V) be an oriented matroid. Then O∗ is also an oriented matroid.

Proof. Vector axioms (1) and (2) are simple to verify for O∗. For axioms (3) and (4), let
σ, τ ∈ V∗ and η ∈ V. If supp(σ) ∩ supp(η) ̸= ∅ then let e, f ∈ supp(σ) ∩ supp(η) be such that
σe = ηe and σf = −ηf . Then (σ ◦ τ) · η = 0 since in this case (σ ◦ τ)e = σe and (σ ◦ τ)f = σf .
On the other hand, if supp(σ) ∩ supp(η) = ∅ then supp(σ ◦ τ) ∩ supp(η) = supp(τ) ∩ supp(η)
and so (σ ◦ τ) · η = 0 since τ · η = 0. Therefore vector axiom (3) holds for V∗.

Now assume e ∈ supp(σ) ∩ supp(τ) such that σe = −τe. Consider the set S ⊆ V∗ consisting
of elements η such that ηe = 0, ηf = + whenever one of σf , τf is + and neither is −, and
similarly for −, and ηf = 0 if σf = τf = 0. By construction, every element of S satisfies the
desired properties for vector axiom (4). Assume for the sake of contradiction that for each η ∈ S
there exists ρ ∈ V such that η · ρ ̸= 0. TODO FINISH □
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Proposition 7.10: Let O be an oriented matroid. Then O∗∗ = O.

Proof. It follows from the definition of a dual oriented matroid that if σ is a signed vector
of O, then it is also a signed vector of O∗∗. Therefore, in light of Proposition 7.5, it suffices to
show that every signed circuit of O∗∗ is a signed circuit of O. Let σ be a signed circuit of O∗∗.
Then supp(σ) is a circuit of M(O) since each (non-oriented) matroid is isomorphic to its double
dual. So there exists a signed circuit τ of O with the same support as σ. This implies that τ is
also a vector of O∗∗. If τ ̸= ±σ, then we can apply axiom (4) in O∗∗ to obtain a signed vector
ρ of O∗∗ such that supp(ρ) ⊊ supp(σ). This contradicts that σ is a signed circuit of O∗∗. □

The oriented matroid of a matrix A ∈ Fr×n only depends on the linear space spanned by the
rows of A. In particular, O(A) = {sign(x) : yx = 0 for all y = zA, z ∈ (Rr)∗}. It then follows
from Proposition 7.10 that O∗(A) = {sign(x) : x = zA, z ∈ (Rr)∗}.

As with ordinary matroids, we use the prefix “co” when talking about objects associated
dual oriented matroids. In particular, the signed circuits and signed vectors of O∗ are called the
signed cocircuits and signed covectors of O∗.

4. Low rank

Just as with ordinary matroids, we can represent oriented matroids of rank three pictorially
using lines and dots. We will focus exclusively on the representable case. So let A ∈ Rd×n. We
will think of the columns of A as points in d-dimensional space. If none of the columns are zero,
we can pick a linear functional f ∈ (Rd)∗ such that fa ̸= 0 for each column a of A. Then, we
associate A with the point configuration

{ a

fa
: a is a column of A}

and label those for which fa > 0 “positive” and those for which fa < 0 “negative.” This new
point configuration lies in the affine hyperplane {x ∈ Rd : fx = 1} which we view simply as
Rd−1. We will color the positive points black and the negative ones white. For example, let A
be the following matrix

A =

1 1 1 0 0 0
0 1 1 1 1 0
0 0 1 0 1 1


and denote its columns by a1, . . . , a6. Let e1, e2, e3 be the standard basis of R3 with dual basis
e∗1, e

∗
2, e

∗
3. Define f := e∗1 + e∗2 − 5e∗3. Then the positive points are a1, a2, a4 and the negative

points are a3, a5, a6. Normalizing by f gives the new point configuration1 1
2 −1

3 0 0 0
0 1

2 −1
3 1 −1

4 0
0 0 −1

3 0 −1
4 −1

5

 .

We drop the third row to get a point configuration in R2. We now draw this, coloring the positive
points black and the negative ones white to get the picture in Figure 7.4.1. These pictures give
us a simple interpretation of the signed circuits of the resulting oriented matroid. Let σ be a
signed circuit and let τ obtained from σ by negating every entry on a negative point. Then, the
convex hull of the negative points in τ must intersect the convex hull of the positive points in τ
and removing any nonzero point of τ destroys this property. Conversely, given disjoint subsets
A and B of points whose convex hulls intersect, and are minimal with respect to this property,
let τ be the sign vector that is positive on A and negative on B. Let σ be obtained from τ
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a1

a2

a3

a4

a5

a6

Figure 7.4.1. Two-dimensional picture of a rank-three oriented matroid

by negating all the negative points. Then σ is a signed circuit of the oriented matroid. For
example, from Figure 7.4.1, we can see that e.g. the following are signed circuits of O(A)

(+− 0 + 00) (+− 00 +−) (000 +−+).

We can also read off the signed cocircuits from such a picture. In particular, for each pair
of points e, f ∈ E let l ∈ (Rd)∗ and c ∈ R be such that l(e) = l(f) = c. Define a sign vector
τ ∈ {+,−, 0}E by τg = 0 of l(g) = c, τg = + if l(g) > c and τg = − if l(g) < c. This computation
can be done just using the picture by looking at each line through at least two points, setting
the points on the line to zero, and setting the points on one side positive and the other negative.
Then define σ to be obtained from τ by negating all entries corresponding to negative points
in the picture. In this case, σ is a signed cocircuit of O. This enables us to e.g. read off the
following signed cocircuits from Figure 7.4.1

(+00−−0) (0 + + ++0) (0 + 0 + 0−).

5. Gale diagrams of polytopes

Oriented matroids give us a way to construct and visualize polytopes in more than three
dimensions, as long as they don’t have too many vertices. The main result of this section will be
a construction of an eight-dimensional polytope with twelve vertices that is not combinatorially
equivalent to any polytope with rational vertices.

Given an oriented matroid O and an ordered field F, we say that O is F-realizable if there
exists a matrix A ∈ Fd×n such that O = O(A).

Definition 7.11: Let P ⊆ Rd be a d-dimensional polytope with vertex set {v1, . . . , vn}. The

oriented matroid of P , denoted O(P ), is O(A) where A ∈ R(d+1)×n is defined as follows

A :=

(
1 1 . . . 1
v1 v2 . . . vn

)
.

We say that an oriented matroid O is acyclic if it has no positive circuit and totally cyclic
it has no positive cocircuit. These are dual notions: O is acyclic if and only if O∗ is totally
cyclic.

Theorem 7.12: Let O be an oriented matroid. Then there exists a polytope P such that O =
O(P ) if and only if

(1) O is R-representable,
(2) O is acyclic, and
(3) every circuit of O has at least two positive elements.

In this case P has n vertices and dimension r − 1 where r is the rank of O and n is the size of
its ground set.
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1

3 4

25 6 9

7
10

8
1112

Figure 7.5.2. The Gale diagram of an 8-dimensional polytope with 12 vertices
that has a non-rational vertex.

Proof. TODO □

Given a matrix A ∈ Rd×n of rank d, we say that B ∈ R(n−d)×n is a Gale dual of A if it
has rank (n− d) and if ABT = 0. In this case we may also say that A and B are Gale duals.
Note that if A and B are Gale duals, then O(A)∗ = O(B). We say that B is a Gale diagram
of a polytope P if O(B) = O(P )∗. Theorem 7.12 gives us the following characterization of Gale
diagrams of polytopes as a corollary.

Corollary 7.13: Let B ∈ R(n−d−1)×d have rank n − d − 1. Then B is the Gale diagram of
a polytope P if and only if O(B) is totally cyclic and every cocircuit has at least two positive
elements. In this case, P has n vertices and dimension d.

Given a matrix B ∈ R(n−d−1)×d of rank n−d− 1 satisfying the conditions of Corollary 7.13,
we let P(B) denote the polytope with Gale diagram B.

Proposition 7.14: Let F be an ordered field and let A ∈ Fd×n with columns a1, . . . , an. Then
σ is a signed covector of O(A) if and only if there exists b ∈ (Fd)∗ such that

(1) bai = 0 if σi = 0,
(2) bai < 0 if σi = −, and
(3) bai > 0 if σi = +.

Proof. Let B ∈ F(n−d)×d have rank n − d such that ABT = 0. Then O(A)∗ = O(B) by
Proposition 7.8. Then σ is a signed vector of O(B), and therefore a signed covector of O(A), if
and only if there exists some x ∈ Fn such that Bx = 0 and sign(x) = σ. Our assumptions on
A,B imply that the columns of AT are a basis of ker(B). Thus x = AT y for some y ∈ Rd. The
desired b is then yT . □

Proposition 7.15: Let P,Q ⊆ Rd be polytopes of dimension d. If P and Q are combinatorially
equivalent, then O(P ) and O∗(P ) have the same positive cocircuits.

Proof. This follows immediately from Proposition 7.14 and the fact that all faces of a
polytope are exposed (Proposition 2.11). □

Example 7.16: TODO: insert example of two combinatorially equivalent polytopes with dif-
ferent oriented matroids

Theorem 7.17: Let O be as in Figure 7.5.2. Then
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(1) O is the Gale diagram of an 8-dimensional polytope P ,

(2) any R-representable oriented matroid Ô of rank 3 with the same positive circuits as O
has M(Ô) = M(O), and

(3) any polytope combinatorially equivalent to P has a non-rational vertex.

Proof. Corollary 7.13 implies that the first claim follows once we verify that O has no
positive cocircuit, and that every cocircuit has at least two positive elements. This can be done
by checking the lines in Figure 7.5.2. For the second claim, let O′ be an oriented matroid with
the same positive circuits as O and let B be a matrix such that O(B) = O′. Then M(O′) has
no rank-zero flats aside from the empty set. Then the rank-one flats of M(O′) are precisely
those of M(O) (in particular note that those with two elements are {6, 9}, {7, 10}, {8, 11} since
these are the only two-element positive circuits). The following are all positive circuits of O and
therefore of O′

1,2,9 1,8,12 1,4,10 2,5,9 2,7,12
2,3,11 3,5,10 3,6,12 4,5,12 4,6,11.

Thus the rank-two flats of M(O) with three or more elements also have rank two in M(O).
Since B has rank three, its only rank-three flat is the whole ground set. Thus M(O) = M(O′)
since they have the same lattice of flats, the same parallel elements, and no loops. Since M(O′)\
{9, 10, 11} is matroid given in Figure 5.2.1, it is not representable over Q. Proposition 6.10 then
implies that M(O′) is also not representable over Q and Proposition 7.7 implies that neither is
O′. Thus the second claim is proven.

Now let P ′ be a polytope that is combinatorially equivalent to P . Proposition 7.15 and the
second claim imply that the oriented matroid of any Gale diagram of P ′ is not Q-representable.
In particular, if the columns of A are the vertices of P ′ and B is a Gale diagram of P ′, then
ABT = 0 and therefore A has an irrational entry. Thus P is not combinatorially equivalent to
any polytope with rational vertices. □





CHAPTER 8

Algebraic matroids

1. Field theory preliminaries

Given fields K and F, we say that K is a field extension of F if F ⊆ K. We notate this
by K/F. Given a field extension K/F and S ⊆ K, we let F(S) denote the minimal subfield
of K containing F and S. If x is a set of indeterminates then F[x] denotes the polynomial
ring with coefficients in F and indeterminate set x. Unless otherwise stated, x will denote the
set {x1, . . . , xn}. Given K/F and S ⊆ K, one says that S is (algebraically) independent
over F if f(s1, . . . , sn) ̸= 0 for all s1, . . . , sn ∈ S and f ∈ F[x]; otherwise, one says that
S is (algebraically) dependent over F. We will abuse notation and say that s ∈ K is
(in)dependent over F to mean that {s} is. A field extension K/F is algebraic if s is algebraically
dependent over F for all s ∈ K.

Lemma 8.1: Let K/F be a field extension. A given s ∈ K is algebraically dependent over F if
and only if F(s)/F is finite dimensional as an F-vector space. If K/F is finite-dimensional as
an F-vector space then it is algebraic.

Proof. Let s ∈ K. If F(s) is d-dimensional as an F-vector space then {1, s, . . . , sn} is linearly
dependent over F. In other words, there exist f0, . . . , fn ∈ F such that f0+ f1s+ · · ·+ fns

n = 0.
Define f := f0 + f1x+ · · ·+ fnx

n ∈ F[x]. Then f(s) = 0 so s is algebraically dependent over F.
Conversely, if s satisfies a polynomial p ∈ F[x] of degree d, then s satisfies an irreducible

factor of p and so we may assume p is irreducible (over F) without loss of generality. The
F-algebra homomorphism F[x] → F(s) obtained by sending x to s then has ⟨p⟩ as its kernel so
F(s) contains an isomorphic copy of F[x]/⟨p⟩. Since p is irreducible, ⟨p⟩ is a maximal ideal of
F[x] and therefore F[x]/⟨p⟩ is a field. But F(s) is the minimal subfield of K containing both s
and F, both of which lie in the isomorphic copy of F[x]/⟨p⟩, thus implying that F(s) ∼= F[x]/⟨p⟩.
Finally, note that F[x]/⟨p⟩ is d-dimensional as an F-vector space.

Now assume K/F is n-dimensional for some finite n and let s ∈ K. As before, the coefficients
of the linear dependence among {1, s, s2, . . . , sd} give the coefficients of the polynomial vanishing
on s. Therefore K/F is algebraic. □

Not all algebraic field extensions are finite dimensional. To see this define Sn := {( n
√
2)Oi :

0 ≤ i ≤ n− 1} and S :=
⋃∞

n=2. Then Q(S) is a subfield of C that is algebraic over Q, but each
Sn is a Q-linearly independent set for every n.

Lemma 8.2: Let F/L be an algebraic field extension and let K/F be a (possibly non-algebraic)
field extension. Then each s ∈ K is algebraic over F if and only it is algebraic over L. In
particular, if K/F is algebraic then so is K/L.

Proof. Let s ∈ K. If s is algebraic over L then it is also algebraic over F since L[x] is
a subring of F[x]. Now assume s is algebraic over F and let p ∈ F[x] be irreducible such that

47
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p(s) = 0. Let c1, . . . , ck be the coefficients of p. Then s is algebraic over the subfield L(c1, . . . , ck)
of F. Induction on k it now suffices to show that if s is algebraic over L(c) for some c ∈ F, then
s is algebraic over L. Since F and therefore c is algebraic over L, Lemma 8.1 implies that L(c)
is d1-dimensional as an L-vector space for some finite d1. Similarly, L(c)(s) is d2-dimensional
as an L(c)-vector space. This implies that L(c)(s) is at most d1d2-dimensional as an L-vector
space. In particular, it is finite dimensional. Since L(s) is an L-vector subspace of L(c)(s), it is
finite dimensional as well. Lemma 8.1 now implies that s is algebraic over L. □

Definition 8.3: A transcendence basis of a field extension K/F is a set S ⊆ K such that
K/F(S) is algebraic. A field extension K/F is finitely generated if K = F(S) for some finite
set S ⊆ K.

Proposition 8.4: Let K/F be a finitely generated field extension. Then there exists a finite
cardinality k such that every transcendence basis of K/F has cardinality k.

Proof. Since K/F is finitely generated we may write K = F(s1, . . . , sn). Without loss of
generality assume that s1, . . . , sk are algebraically independent over K and that {s1, . . . , sk, sk+i}
is algebraically dependent for each i ≥ 1. Then F(s1, . . . , sk+l) is finite dimensional over
F(s1, . . . , sk+l−1) for each l ≥ 1 and therefore algebraic by Lemma 8.1. Lemma 8.2 then implies
that K is algebraic over F(s1, . . . , sk). Therefore {s1, . . . , sk} is a transcendence basis of K/F
since it is algebraically independent.

Now assume T ⊆ K is another transcendence basis and assume |T | ≥ k without loss of
generality. We proceed by induction on k − |{s1, . . . , sk} ∩ T |. In the base case, where si ∈ T
for 1 ≤ i ≤ k, we have T = {s1, . . . , sk} since T ⊆ K is algebraically independent. Otherwise,
let t ∈ T such that t ̸= si for all 1 ≤ i ≤ k. Since {t, s1, . . . , sk} is algebraically dependent over
F there exists a polynomial f ∈ F[y, x1, . . . , xk] such that f(t, s1, . . . , sk) = 0. Since {t} and
{s1, . . . , sk} are each algebraically independent, we may write as follows, relabeling the s1, . . . , sk
if necessary

f =
d∑

i=0

fi(t, s2, . . . , sk)s
i
1

where d ≥ 1 and fd ̸= 0. But this shows that s1 is algebraically dependent over F(t, s2, . . . , sk)
Lemma 8.2 then implies thatK/F(t, s2, . . . , sk) is algebraic. By induction, we then haveK/F(t1, . . . , tk)
is algebraic for some elements t1, . . . , tk of T . But then T = {t1, . . . , tk}. □

In light of Proposition 8.4, we may define the transcendence degree of a finitely generated
field extension K/F by the size of a transcendence basis.

Proposition 8.5: Let K/F be a finitely generated field extension and let E ⊆ K be finite. Let
I consist of the algebraically independent subsets of E. Then (E, I) is a matroid.

Proof. We proceed by showing that the set B of maximal elements of I satisfies the basis
axioms. Each element of B is a transcendence basis of F(E) which we without loss of generality
assume is equal to K. Proposition 8.4 implies that K/F has a transcendence basis so B is not
empty. So let B1, B2 ∈ I be distinct maximal elements. Write B1 = {s1, . . . , sk} and let t ∈ B2\
B1. We proceed as in the proof of Proposition 8.4 to show that K is algebraic over F(t, s2, . . . , sk).
It now remains to show that {t, s2, . . . , sk} is algebraically independent over F. If not, then since
{s2, . . . , sk} is algebraically independent, we would have that K(t, s2, . . . , sk)/K(s2, . . . , sk) is
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algebraic. Then Lemma 8.2 implies that K(s1, . . . , sk)/K(s2, . . . , sk) is algebraic, contradicting
that {s1, . . . , sk} is algebraically independent. □

Given a finite subset E of a field extension K/F, the matroid given in Proposition 8.5 is
called the algebraic matroid of E. We denote it M(E). If M = M(E) for some finite subset
E ⊆ K/F, then we say that M is F-algebraic or algebraic over F.

2. Geometry of algebraic matroids

Let F be a field and let n ≥ 1. The variety of a set F ∈ F[x1, . . . , xn] of polynomials is the
set V (F ) ⊆ Fn defined by

V (F ) = {(s1, . . . , sn) ∈ Fn : f(s1, . . . , sn) = 0 for all f ∈ F}.
The ideal generated by a set F ⊆ F[x] of polynomials is denoted ⟨F ⟩. Passing from a set of
polynomials to the ideal it generates does not change the corresponding variety - see Problem 8.3.
We associate to any S ⊆ Fn the set of polynomials I(S) ⊆ F[x1, . . . , xn] that vanish when
evaluated at any point in S. Formally speaking we define

I(S) := {f ∈ F[x] : f(s) = 0 for all s ∈ S}.
Then I(S) is an ideal - see Problem 8.4. The Zariski closure of a set S ⊆ Fn, denoted S,
is the variety V (I(S)). It is the smallest variety containing S. Given a variety V ⊆ Fn, the
coordinate ring of V is the ring

F[V ] := F[x]/I(V ).

A variety V ⊆ Fn is irreducible if whenever V = V1∪V2 for varieties V1, V2 ⊆ Fn, either V = V1

or V = V2. This is equivalent to the condition that F[V ] is an integral domain (see Problem 8.6).
We will focus exclusively on irreducible varieties. This is not a major loss of generality since
every variety is the union of finitely many irreducible varieties. We will skip proving this since
it requires a major detour into commutative algebra, but the interested reader is advised to
consult e.g. [3, Chapter 3] or [4, Chapter 8].

The quotient field of an integral domain R, denoted K(R), is the minimal field containing
R. Concretely, it consists of ordered pairs (a, b) modulo the equivalence relation (a, b) ∼ (c, d)
if and only if ad = bc and the ring operations are (a, b) + (c, d) = (ad+ bc, bd) and (a, b)(c, d) =
(ac, bd). The dimension of an irreducible variety V ⊆ Fn is defined to be the transcendence
degree of the field extension K(F[V ])/F.

We will now argue that this definition of dimension really captures what “dimension” intu-
itively means. Define an equivalence relation on F[x1, . . . , xn] by f ∼ g if and only if f(s) = g(s)
for all s ∈ V. Then f ∼ g if and only if f = g + h for some h ∈ I(V ). In other words, elements
of F[V ] are the equivalence classes of polynomial functions on Fn based on the functions they
define when restricted to V . It then follows that K(F[V ]) is the equivalence class of rational
functions on Fn based on the functions they define on V . The transcendence degree of the field
extension K(F[V ])/F is therefore the minimum number of rational functions ρ1, . . . , ρk on V
such that for all s ∈ V where ρi(s) has nonzero denominator for all i, if ρ is another rational
function on V where ρ(s) has nonzero denominator, then ρ(s) is a root of a polynomial equation
in one variable whose coefficients only depend on ρi(s). TODO: insert examples

Given a finite set E and a field F we let FE denote the vector space whose coordinates are
indexed by E. The corresponding polynomial ring, whose indeterminates are indexed by E, is
written F[xe : e ∈ E]. Each subset S ⊆ E defines the coordinate projection πS : FE → FS and
the inclusion of rings F[xe : e ∈ S] ↪→ F[xe : e ∈ E].
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Proposition 8.6: Let L/F be a field extension, let E ⊆ L be finite, and define K := F(E).
Then there exists an irreducible variety V ⊆ FE such that

(1) the rank of S ⊆ E in M(E) is the dimension of πS(V ),
(2) K is isomorphic to K(F[V ]), and
(3) M(E) is isomorphic to M(X) where X := {xe : e ∈ E} ⊆ K(F[V ]).

Proof. Define an F-algebra homomorphism ϕ : F[xe : e ∈ E] → K by extending the map
xe 7→ e on generators. Letting I be the kernel of ϕ gives us an injective ring homomorphism
F[xe : e ∈ E]/I → K so we may treat F[xe : e ∈ E]/I as a subring of K. Since K is a
field, this implies F[xe : e ∈ E]/I is an integral domain. Moreover, F[xe : e ∈ E]/I is the
subring of K generated by F and E. Since K is generated as field by F and E, this implies
that K(F[xe : e ∈ E]/I) ∼= K. Define V := V (I). Then V is irreducible. For each S ⊆ E, the

coordinate ring of πS(V ) is F[S]. Therefore the dimension of πS(V ) is the transcendence degree
of the field extension F(S)/F. This is the largest cardinality of an algebraically independent
(over F) subset of S, i.e. the rank of S in M(E). This proves the first claim. □

Given an irreducible variety V ⊆ FE , we let M(V ) denote the algebraic matroid of {xe :
e ∈ E} viewed as a subset of K(F[V ]) as a field extension of F. Proposition 8.6 implies that the

rank of S ⊆ E is given by the dimension of πS(V ).
The support of a polynomial f ∈ F[xe : e ∈ E], denoted supp(f), is the minimal subset

S ⊆ E such that f ∈ F[xe : e ∈ S].

Proposition 8.7: Let K/F be a field extension and let E ⊆ K be finite. Then for each circuit
C of M(E) there exists an irreducible polynomial pCF[xe : e ∈ E] with support C that vanishes
under the substitution xe 7→ e. This polynomial is unique up to multiplication by nonzero
elements of F.

Proof. TODO □

Given a finite subset E ⊆ K of a field extension K/F and a circuit C of the matroid M(E),
a polynomial pC as in Proposition 8.7 is called a circuit polynomial .

Proposition 8.8: Let K/F be a field extension, let E ⊆ K be finite and let C denote the set of
circuits of M(E). For each C ∈ C fix a circuit polynomial pC ∈ F[xe : e ∈ E] and define P to
be the ideal in F[xe : e ∈ E] generated by pC ’s, i.e.

P := ⟨pC : C ∈ C⟩ ⊆ F[xe : e ∈ E].

Then P is prime and M(E) is isomorphic to M(X) where X = {xe : e ∈ E}, viewed as a subset
of K(F[xe : e ∈ E]/P ), which is viewed as a field extension of F.

Proof. Let I be the kernel of the F-algebra homomorphism F[xe : e ∈ E] → K given by
xe 7→ e. Then P ⊆ I and our goal is to show that this containment is moreover an equality.
So for the reverse direction assume for the sake of contradiction that their exists f ∈ I \ P
and assume f has been chosen to have minimal support. The support of f cannot be strictly
contained in a circuit C since this would contradict C being a circuit, nor can f have the support
of a circuit by Proposition 8.7. If supp(f) does not contain a circuit, then this would imply that
supp(f) is independent in M(E) but the existence of f implies that f is dependent in M(E),
a contradiction.

The only remaining possibility is that supp(f) strictly contains a circuit C. Let p be a circuit
polynomial for C and let e ∈ C. Then we can eliminate e from f and p to get a polynomial g
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such that supp(g) ⊊ supp(f). Our minimality assumption on supp(f) implies that g ∈ P . So
we have g = h1f + h2p. Since g and p are in P and f /∈ P , this implies h1 ∈ P . So then g is
congruent to h2p modulo I2. This implies that the (images modulo I2) of the circuit polynomials
generate I/I2. The circuit polynomials therefore generate I by Nakayama’s Lemma. TODO:
find a proof without Nakayama’s lemma, or write up stuff about Nakayama’s lemma, or make
decisions about what I’m going to outsource to a commutative algebra book. □

3. Algebraic representability

Proposition 8.9: Let F/L be an algebraic field extension and let M be a matroid. Then M is
algebraically representable over F if and only if it is algebraically representable over L.

Proof. Let K/F and let S ⊆ K. We will show that S is algebraically dependent over F if
and only if it is algebraically dependent over L. The proposition will then immediately follow.
Assume S is algebraically dependent over L. Since L ⊆ F, this implies that S is algebraically
dependent over F too. Now assume S is algebraically dependent over F. We may assume without
loss of generality that every proper subset of S is algebraically independent over F. Then S \ s
is algebraically dependent over F(s) for all s ∈ S. Induction on |S| shows that S is algebraically
dependent over L via Lemma 8.2. □

Proposition 8.10: Let F be an algebraically closed field, let t be transcendental over F, and let
M be a matroid. Then M is F-algebraically representable if and only if it is F(t)-algebraically
representable.

Proof. TODO □

Recall that the characteristic of a field F is the minimum n ≥ 1 such that
∑n

i=1 1 = 0 in
F, and 0 if such an n does not exist. The characteristic of any field is either 0 or prime (see
Problem 8.7). The prime subfield of a field F is the minimal subfield of F. Equivalently, it is
the subfield generated by 1. A field is prime if it is its own prime subfield. For each n ≥ 0,
there is at most one prime field of characteristic n. In particular, the only prime fields are Q and
the finite fields Fp for p prime. The algebraic closure of a field F is the minimal algebraically
closed field containing F. It is nontrivial to prove that every field does have an algebraic closure
(see e.g. [2, Chapter 13.4]).

Theorem 8.11: Let M be a matroid and let F be a field. If M is F-algebraically representable
then M is K-algebraically representable over any field K with the same characteristic.

Proof. Let K/F be a field extension and let E ⊆ K such that M = M(E). For Let L be
the prime subfield of F. □

4. Applications

Many questions in applied algebraic geometry boil down to describing the spanning sets of
a particular algebraic matroid. In this section we look at two particular examples.

4.1. Low-rank matrix completion. In a low-rank matrix completion problem, one is
given access to a subset of entries of a matrix, and hopes to fill in the missing entries in a way
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Figure 8.4.1. The subset of known entries of the matrix to the left correspond
to the graph on the right. If a, b, c, d, e, f are sufficiently generic, then the partial
matrix can be completed to rank two, but not rank one.

that minimizes rank, or that achieves a particular low rank. For example, given any partial
matrix of the following form (

a b
c ·

)
,

one can fill in the missing entry so that the resulting matrix has rank one. Namely, plug in
bc
a . Of course, this won’t work if a = 0, but we can safely ignore this issue, and similar ones,
by working over C and invoking a genericity assumption on the visible entries. In this setup,
whether or not a particular partial matrix can be completed to a particular rank r depends
only on which entries are observed, and not their actual values. Thus, one can ask: given an
integer r ≥ 1 and a subset E of entries of an m × n matrix – which is naturally encoded by
the bipartite graph ([m], [n], E), see Figure 8.4.1 – can the resulting generic1 partial matrices be
completed to rank r? The subsets of entries for which the answer to this question is “yes” form
the independent sets of a matroid.

Let M(m×n, r) ⊆ Cm×n denote the set of m×n complex matrices of rank at most r. Since
a matrix has rank r or less if and only if all (r+1)× (r+1) submatrices have zero determinant,
M(m× n, r) is a variety. Moreover, it is irreducible so we can talk about its algebraic matroid.
The ground set of this matroid is the set of entries of an m× n matrix, which we identify with
the edge set of the complete bipartite graph Km,n. Subsets of the ground set can therefore be
described as bipartite graphs on partite sets of size m and n.

Given a bipartite graph G, let CG denote the vector space whose coordinates are indexed
by edges of G, and let ΩG : Cm×n → CG be the map that projects a matrix M onto its entries
corresponding to the edges of G. Elements of CG are called G-partial matrices. Given a
G-partial matrix A, elements of Ω−1

G (A) are called completions of A. A fundamental problem

in low-rank matrix completion is to determine whether a given partial matrix A ∈ CG has a
completion to a particular rank. The following proposition tells us that assuming A is generic,
whether or not A can be completed to rank r depends only on G.

Proposition 8.12: Let G = ([m], [n], E) be a bipartite graph and let A ∈ CG be a G-partial
matrix. If A is generic, then A has a completion to rank r if and only if G is independent in
the algebraic matroid M(M(m× n, r)).

Proof. Given any irreducible variety V ⊆ CE , S ⊆ E is independent in M(V ) if and
only if dim(πS(V )) = |S|. This means that the set {x ∈ CS : x /∈ πS(V )} is contained in a

1When applied algebraic geometers say “property P is satisfied by a generic point of V ,” it means that the
set of points in V where P is not satisfied is contained in a subvariety of V . We use the word “generic” to avoid
explicitly writing down what that variety is. When V is irreducible, any subvariety of V has lower dimension than
V . Therefore, when F = C or R, if V is irreducible and a generic point of V satisfies property P , then a point
randomly sampled from V with respect to a reasonable probability distribution will satisfy P with probability
one.
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subvariety of CS , and in particular, has dimension strictly less than |S|. Thus given any generic
x ∈ CS , there exists y ∈ V such that πS(y) = x. The proposition is now the special case where
V = M(m× n, r). □

Proposition 8.12 now motivates the following general problem.

Problem 8.1: For each r, give a combinatorial description of the (independent sets of the)
matroid M(M(m× n, r)).

Problem 8.1 is open in all cases other than r = 1 and r = 2. For r = 1, it is relatively easy
to show that M(M(m× n, 1)) is the graphic matroid of Km,n; we do this below.

Proposition 8.13: The matroid M(M(m × n, 1)) is the graphic matroid of Km,n. In other
words, a bipartite graph G = ([m], [n], E) is independent in M(M(m × n, 1)) if and only if Gis
a forest.

Proof. Assume G has no cycles. Let X be a generic G-partial matrix. By Proposition 8.12,
it suffices to show that X can be completed to a rank-one matrix. Let G′ be obtained from G by
removing a vertex of degree zero or one; without loss of generality, assume it was the row-vertex
m. Let X ′ be the G′-partial matrix obtained from X by removing the last row. By induction,
X ′ can be completed to a rank-one matrix Y . If the degree of m was zero, then we can further
complete X to a rank-one matrix by plugging in zeros for the entries in the last row. If the
degree of m was 1, then assuming the unique known entry of the mth row of X is in the first
column, then multiply the (m − 1)th row of Y by Xm,1/Ym−1,1 and adjoining it to Y gives a
rank-one completion of X.

Now assume G has a cycle x1, x2, . . . , x2k (G is bipartite, so the cycle must have even length).
Then πG(M(m × n, 1)) must satisfy the equation x1x3 · · ·x2k−1 = x2x4 · · ·x2k. In particular,
πG(M(m× n, 1)) has dimension less than the number of edges of G. □

The characterization of M(M(m × n, 2)) is more complicated. We omit the proof, which
uses tropical geometry.

Theorem 8.14 ([1, Theorem 4.4]): Let G = ([m], [n], E) be a bipartite graph. Then G is
independent in M(M(m× n, 2)) if and only if there exists a two-coloring of the edges of G with
no monochromatic cycle, and no cycle whose edge-colors alternate.

4.2. Rigidity theory. If one were to physically build a graph G in d-dimensional space,
using rigid struts for the edges, and universal joints for the vertices (i.e. joints that the struts can
move freely around) would the resulting structure be rigid, or flexible? Consider, for example,
the four-cycle. If we build it in the plane as a square, then the resulting structure is flexible,
since we can deform the square into a rhombus without stretching, compressing, or breaking any
of the edges – see Figure 8.4.2. However, if we add a chord to the four-cycle, then it becomes
rigid in the plane.

→

Figure 8.4.2. The four-cycle is not rigid in the plane, but becomes rigid after
adding a chord.
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Whether or not a graph is rigid in d-dimensional space depends not only on the combinatorics
of the graph, but also on the specific positions we place the vertices. For example, we can build
the four-cycle in the plane so that it becomes rigid by placing all four vertices on a line. However,
just as in the matrix completion example, we can safely ignore such issues by invoking a genericity
assumption. Then, every graph will either be rigid or flexible in d-dimensional space, and we
can ask to characterize those that are rigid. Moreover, the graphs on a fixed number of vertices
that are rigid in d-dimensional space form the spanning sets of a matroid. When d = 1, this
is the graphic matroid of the complete graph (see if you can convince yourself of this). When
d = 2, the independent sets of this matroid consist of graphs such that every subgraph on k
vertices has at most 2k − 3 edges. More on this later.

Consider the function ϕd
n : (Rd)n → R(

n
2) that sends a configuration of n points in d-

dimensional space to their vector of squared pairwise distances. For example, if d = 2, this map
would send the n points (x1, y1), . . . , (xn, yn) to the vector ((xi − xj)

2 + (yi − yj)
2)1≤i<j≤n. The

image of ϕd
n is subset of R(

n
2), and taking its Zariski closure in C(

n
2) (i.e. the smallest variety in

C(
n
2) containing it) yields an irreducible variety CMd

n called the Cayley-Menger variety of n

points in Rd. We can identify the coordinate indices of C(
n
2), i.e. the ground set of the matroid

M(CMd
n), with the edges of the complete graph Kn.

Proposition 8.15: A graph G is spanning in M(CMd
n) if and only if it is rigid in d-dimensional

space.

proof sketch. Given any varieties V and W and any polynomial map f : V → W , the
following relationship holds for generic x ∈ V

dim(V ) = dim(f(V )) + dim(f−1(f(x))).

When dim(V ) = dim(f(V )), this implies dim(f−1(f(x))) = 0 and since dim(f−1(f(x)) is a
variety, this is equivalent to dim(f−1(f(x)) being a finite set. In particular, if V ⊆ CE then
S ⊆ E is spanning in M(V ) if and only if π−1

S (πS(x)) ∩ V is a finite set. So it remains to see

that G is rigid if and only if π−1
G (πG(x)) ∩ CMd

n is finite for generic x ∈ CMd
n.

We now need to be more formal in our definition of rigidity. Suppose we build a graph G
in Rd by putting the vertices at points p(1), . . . , p(n). A (nontrivial) flex of G is a curve in the
space of configuration of n points in Rd, i.e. a function p : [0, 1] → (Rd)n, such that

(1) the curve starts at the original configuration, i.e. p(0) = (p(1), . . . , p(n))
(2) all configurations along the curve preserve the lengths of the edges of G, i.e. for each

t ∈ [0, 1] and edge {i, j} of G, ∥p(t)(i) − p(t)(j)∥2 = ∥p(0)(i) − p(0)(j)∥2, and
(3) somewhere along the curve, the framework on G actually gets deformed, i.e. for some

t ∈ [0, 1] and some non-edge {i, j} of G, ∥p(t)(i) − p(t)(j)∥2 ̸= ∥p(0)(i) − p(0)(j)∥2.
This formalizes our intuitive notion of what it would mean to deform our particular construction
of a graph. A graph is then (generically) rigid if for any generic point configuration p(1), . . . , p(n),
the corresponding framework on G does not have any flex.

To see that the absence of a flex of G is equivalent to the statement that π−1
G (πG(x))∩CMd

n

is generically finite, first note that if p : [0, 1] → (Rd)n is a curve satisfying the second condition
required for p to be a flex of G, then πG ◦ ϕd

n ◦ p([0, 1]) is a single point y in πG(CM
d
n), and

π−1
G (y)∩CMd

n contains ϕd
n◦p([0, 1]). The curve p additionally satisfies the third condition if and

only if ϕd
n ◦ p([0, 1]) is one-dimensional, thus exhibiting infinitely many points in π−1

G (πG(x)) ∩
CMd

n for some x ∈ π−1
G (y) ∩ CMd

n. Conversely, since π−1
G (πG(x)) ∩ CMd

n is a variety, then if



5. EXERCISES 55

it has infinitely many points, it must contain a curve. In this case, we can find such a curve
that also lies in the image of ϕd

n (this is me ignoring the issues that arise when passing from a
semi-algebraic set to its complex Zariski closure). Such a curve is a flex. □

Proposition 8.15 motivates the following general problem: for each d ≥ 1, find a combinato-
rial description of M(CMd

n), the algebraic matroid of the Cayley-Menger variety of n points in
d-dimensional space. For d ≥ 3, this problem is open, and has been for at least a century. The
d = 1 case is quite simple: M(CM1

n) is the graphic matroid of the complete graph Kn, and you
might be able to see this intuitively. There are a handful of characterizations for the d = 2 case;
perhaps the most famous, and elegant, due to Hilda Polaczek-Geiringer, is the following

Theorem 8.16 ([7]): A graph G is independent in M(CMd
n) if and only if every subgraph of G

on k vertices has at most 2k − 3 edges.

Theorem 8.16 is known as Laman’s theorem , based on the mistaken, but previously wide-
spread, belief that this result originated with Gerard Laman’s 1970 paper [5]. Recently however,
it was noticed that Hilda Pollaczek-Geiringer had actually proven this result much earlier in
1927 [7].

5. Exercises

Problem 8.2: For each of the following field extensions K/F, determine which are finite-
dimensional F-vector spaces, which are algebraic, and which are finitely generated:

(1) C/R
(2) C/Q
(3) Q/Q where Q denotes the algebraic closure of Q, i.e. the subfield of C consisting of

elements that are algebraic over Q
(4) Q(x)/Q
(5) Q(π)/Q
(6) Q(

√
2)/Q.

Problem 8.3: Let F ⊆ F[x]. Prove that V (F ) = V (⟨F ⟩).

Problem 8.4: Prove that I(S) ⊆ F[x] is an ideal for every S ⊆ Fn.

Problem 8.5: Let For each ideal I ⊆ F[x], define the radical of I to be
√
I := {f : fn ∈ I for some n ≥ 1}.

Prove that
√
I is an ideal and that V (I) = V (

√
(I)).

Problem 8.6: Prove that a variety V ⊆ Fn is irreducible if and only if its coordinate ring F[V ]
is an integral domain.

Problem 8.7: Prove that the characteristic of any field is either 0 or prime.
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